DNA Barcoding of Troglobitic Isopods from Groundwater Calcretes of Central Western Australia

Javidkar, M¹., Cooper, S. J. B^{1,2}., King, R^{1,2}., Humphreys, W. F³& Austin, A¹

1 Centre for Evolutionary Biology and Biodiversity, School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005, Australia

2 South Australian Museum, Adelaide, 5000, SA, Australia

3 Western Australian Museum, Perth, WA 6000, Australia

Background:

Recent discoveries in groundwater calcretes of the Yilgarn region of central WA have shown:

- An extraordinary diversity of subterranean invertebrates including both groundwater fauna (stygofauna) and terrestrial subterranean animals (troglofauna).
- Short-range endemic taxa, with species restricted to individual calcrete bodies, suggesting calcretes are equivalent to "subterranean islands" and raising conservation issues for environmental planning.

2 3 4 5 6 PIBRAN REGION WESTERN AUSTRALIA 7 Perth FIEGION Perth REGION

Fig1. Goundwater calcretes in central WA, Black: Groundwater Calcretes, Grey: Ancient Palaeodrainages.12 groundwater calcretes were investigated (numbers on the map show the calcretes studied).

Fieldwork:

Results:

- A significant diversity of mtDNA lineages (~28) of troglobitic oniscidean isopods.
- Inter-lineage p-distance of between 3.36% & 28.3%
- Existence of three monophyletic groups corresponding to three oniscidean isopod families including Trichorhinidae, Armadillidae and Phylosciidae
- Generally, each lineage restricted to an individual calcrete body (only one exception).

Fig2. Bayesian phylogenetic tree of troglobitic oniscidean isopods based on *COI* gene (Red clades indicate surface species of genus *Trichorhina*). Posterior probabilities in front of the nodes. Numbers in parentheses show calcretes localities on the map.

Discussion:

- Significant phenotypic diversity from completely eyeless and pale body to presence of eyes and dense body pimentation.
- Subterranean island hypothesis is supported with little or no dispersal between calcretes.
- Evidence for colonisation of underground habitats by multiple ancestral surface species.

Acknowledgements:

Our thanks to Kathy Saint and Dr Mark Stevens for their official arrangements & invaluable help. To The University of Guelph for providing part of the *COI* sequences. The research is supported by the ARC linkage grant (#LP100200494).