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Journal of Animal Ecology (1979), 48, 427-453

PRODUCTION AND RESPIRATION IN ANIMAL
POPULATIONS

By W. F. HUMPHREYS

School of Biological Sciences, University of Bath, Claverton Down, Bath, BA2TAY,
Avon, England

SUMMARY

(1) Analysis is made of 235 energy budgets from the literature to determine the
relationship between annual production and respiration in natural populations of animals.

(2) Homoiotherms separate into four groups; insectivores, birds, small mammal
communities and other mammals.

(3) Poikilotherms separate into three groups; fish and social insects, non-insect
invertebrates and non-social insects.

(4) The invertebrate groups are separable into trophic categories and herbivores have
the lowest production efficiency.

(5) There is no relationship between animal weight and production efficiency.

(6) Within the groups derived, species with different habitats (aquatic and terrestrial)
do not have different production efficiencies.

(7) There is no firm evidence that production efficiency is dependent upon the magnitude
of production.

(8) Distribution of the data indicates that there is no quantum jump in production
efficiency between poikilothermic and homoiothermic animals.

(9) Regression equations are given for each of the derived groups relating annual
production to respiration (both as log;, cal m~2 yr~1) in animal populations.

INTRODUCTION

Engelmann (1966) suggested that there was a linear relationship between annual produc-
tion and respiration per unit area in animal populations. Additional data have been
added to the ‘Engelmann line’ (Golley 1968; Hughes 1970; McNeill & Lawton 1970;
Shorthouse 1971; Lévéque 1973) but the relationship has been analysed seriously only
thrice.

McNeill & Lawton (1970) plotted respiration against production (both as log,, kcal
m~2 yr-1) and were able to separate clearly the homoiotherms from the poikilotherms.
They suggested that when sufficient data were available the poikilotherms would be divis-
ible into three groups; short lived with low cost resting (overwintering) stages, short
lived with high cost overwintering stages and long lived poikilotherms, and that the pro-
duction efficiency would decrease in the same order. They showed that the relationship
for the short lived poikilotherms had a slope (b in y = a + bx) different from 1-0
whether production or respiration was taken as the dependent variable but the slope
for the homoiotherm data did not so differ.

Shorthouse (1971) added a few additional data to those considered above and was able
to derive predictive equations with narrower confidence intervals by separating the poikilo-
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therms by habitat (aquatic v. terrestrial) rather than life cycle duration (for his equations
see Humphreys 1978: Table 6).

Grodzinski & French in Grodzinski & Wunder (1975) analysed the data available for
small mammals and separated insectivores from rodents by their different slopes which
were respectively greater and less than unity.

Almost every energy budget has been derived from a unique set of assumptions and
methods, some of which lead to detectable errors (e.g. Kozlowski’s (1968) reinterpreta-
tion of Birch’s reworking (in Allee et al. 1949) of Lindeman’s (1942) Cedar Bog budget)
while others may lead to undefinable bias (see Humphreys 1978). It has been claimed
that these differences in assumptions and methods may introduce sufficient noise into
energy budgets to prevent the separation of some of the subdivisions discussed above
and particularly the separation of animals by trophic level (Humphreys 1978) as
suggested by Kozlovsky (1968). In addition it has been claimed that the resolution
obtainable from energy budgets may be insufficient to test hypotheses using energetics
methodologies (Humphreys 1978) as attempted by Sutherland (1972).

The number of energy budgets now available should permit the analysis of some of the
energy relations of animal populations mentioned above. This has become more import-
ant as the original equations derived by McNeill & Lawton (1970) are increasingly being
used to complete energy budgets from a knowledge of either production or respiration
(Phillipson 1971; Mason 1971, 1977; Hughes 1972; Olah 1976).

MATERIALS AND METHODS

I follow the terminology of Petrusewicz & Macfadyen (1970) to describe the energy
budgets where P is net production (that due to growth, Pg, and reproduction, Pr) and R
is metabolic heat loss; A = P + R = C — FU all in caloric units. Energy budgets for
235 natural populations were extracted from the literature (Appendix). With one excep-
tion (Llewellyn 1975) energy budgets have no variance estimate; differences in methodo-
logies and assumptions used by different workers such as the arbitrary adjustment of R,
the inclusion or not of Pr in the estimation of P and the effects of immigration should
result in energy budgets that vary widely around the true value (see McNeill & Lawton
1970; Humphreys 1978). No objective method is available to distinguish ‘good’ from
‘bad’ energy budgets so I have applied no selection to the data with the following excep-
tions. The data for Pogonomyrmex badius (Golley & Gentry 1964) were excluded as
they are widely believed to be aberrant (set Pgtal 1978). Budgets partially derived using
the equations from McNeill & Lawton (1970) were excluded as were those covering
more than one taxonomic category (see below). I have not excluded budgets covering
only the larval stages of insects as I did elsewhere (Humphreys 1978).

Where necessary the following conversion factors were used: 1 g carbon = 10-94 kcal.
1 kJ = 0-2388 kcal. Maximum live weight for a species was taken from the original
source directly, read from figures, or converted from dry weight assuming 759 water in
the living animal (flesh weight only in molluscs) or from caloric value using caloric data
for the appropriate group compiled by Cummins & Wuycheck (1971).

The data were initially grouped into ‘taxonomic’ categories which in some cases were
well defined (mice, voles, shrews, fish, social insects, orthoptera, hemiptera, mollusca and
crustacea) or, where data were insufficient, into loose taxonomic groups (other mammals,
other insects and other non-insect invertebrates). Data for birds were pooled from both
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single species studies and community studies and a separate category erected for small
mammal community budgets.

Statistical treatment

As discussed by W. Grodziniski & N. R. French (personal communication) production
cannot occur in the absence of respiration while the converse is not true; theoretically
therefore production should be treated as the dependent variable. In practice respiration
is calculated from the biomass at different times and ideally as an integral so that the
change of biomass plus a constant is tracked. Change in biomass is an index of produc-
tion which makes respiration the dependent variable in practice. However, as discussed
elsewhere (McNeill & Lawton 1970), both R and P are derived from either numbers of
individuals or biomass and are thus not strictly independent. I see no alternative to
presenting the analyses treating both P and R as dependent variables; this has the added
advantage of permitting prediction of the other parameter from either known P or
known R.

Least squares regressions were calculated for each of the original fourteen taxonomic
groups treating either P or R (log;, cal m~2 yr~1) as the dependent variable. Regressions
were compared (see below) with each other and pooled if not significantly different until
the minimum number of separate groups was found. Within some of the pooled groups
the data were analysed in an attempt to separate further taxonomic categories (Diptera
from other insects, ants from termites and gastropod from pelecypod molluscs), trophic
categories (herbivores from carnivores from detritivores), life cycle duration (short
lived, <2 years, from long lived, >2 years), and habitat (aquatic from terrestrial).

Least squares regressions were calculated for each group considered and the lines
compared using the analysis of variance procedure of Davies & Goldsmith (1972: Table
7.7). Analyses were conducted to test four relationships within and between the regression
lines of the form log y = a + b log x. Firstly whether x and y were correlated and the
slope (b) of the equation differed from zero. Analysis continued to test whether the two (or
more) regression lines had a similar slope (P > 0.05); if the slopes were statistically
similar the lines were tested for common intercept (a). If the intercepts were similar the
lines were pooled otherwise they were treated as separate groups. In this manner all
groups were tested against all adjacent groups before pooling. Finally the individual lines
or the common slope for several pooled groups were tested for a slope of 1-00. Where the
slope is 1-00, there is no relationship between the magnitude of annual R (or P) per unit
area and the production efficiency P/(P + R) = P/A.

The estimates for P and R contain unspecified measurement error as well as natural
variability. The groups of data are typically non-normal and open ended. In a lengthy
discussion of various types of linear regression Ricker (1973) recommends the use of the
geometric mean estimate of the functional regression of y on x (the GM regression),
especially if it is desirable to avoid decisions about the relative accuracy of measuring x
and y. This form of regression gives the best estimate of the slope for predictive purposes
and Ricker recommends the use of ordinary symmetrical confidence limits. For this
reason I present for the derived groups the functional (GM) regressions and the more
familiar least squares predictive equations. Where it is necessary to obtain GM regressions
for the common slope of several groups it has been approximated from the weighted
mean correlation coefficient for the groups.

Unless specified the equations given are standard predictive regressions. Anyone
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interested in the slope of the relationships for specific groups can calculate the slope (v)
for the GM regression from the appropriate predictive equations as: v = b/r (Ricker
1973).

The index P/A was also analysed from the individual studies without consideration of
the magnitude of P or R. Data were analysed for homogeneity of variances by Bartlett’s
test (Sokal & Rohlf 1969). Analysis of variance was conducted and the means tested by
the Student-Newman-Keuls a posteriori test for unequal sample sizes (Sokal & Rohlf
1969).

RESULTS

Variance

Regressions for the original fourteen taxonomic groups have significant heterogeneity
in the residual variances (P < 0-005). This heterogeneity remains after exclusion of
several of the more extreme variances and cannot be removed by transformation of the
data. I follow McNeill & Lawton (1970) in the belief that the empirical relationship
between P and R is of sufficient interest to use standard regression techniques in its
analysis. My use of analysis of variance is to obtain objective subdivisions of the data
available: while I retain the usual criterion of significance at the 5%/ probability level,
any tests giving probabilities close to the 5% level may be viewed with caution. While
moderate heterogeneity of variances is not serious for overall tests of significance, single
degree of freedom comparisons may be seriously in error (Sokal & Rohlf 1969).

Production as the dependent variable

Regression statistics for the original fourteen ‘taxonomic’ categories are presented in
Table 1. All the relationships are significant (P < 0-003) and none of the slopes differ
significantly from the others; these lines have a common slope of 0-961 (+0-021 S.E.)
which does not differ from a slope of 1.0 (tsz33 = 1-857, 0-1 > P > 0-05). Sequential
comparison of the intercepts permitted pooling of several groups leaving 7 separate
regression lines (Table 2); summary analyses of variance for some of the more interesting
comparisons are given in Table 3. Within the pooled groups none of the regression lines
differs from any other with which it has been pooled and the pooled groups are clearly
separated with one exception; the intercepts for the insectivore line differs from that of the
birds (P = 0-0001) but the small mammal community line does not differ from those for
the birds or the insectivores. Pooling the insectivore data with those for the small mammal
communities results in a regression not significantly different from that for the birds
(Table 3). Hence these three lines are kept separate (Fig. 1).

The common slope of the GM regression for the seven derived groups (v = 1.026)
does not differ from 1.0. Re-analysis for common slope, having excluded all budgets for
more than one species, gives a common slope not different from 1.0 (v = 1.000;
Table 2). Analysis for common slope between groups for the homoiotherms and poikilo-
therms separately shows neither differs from unity (v = 1.085 and 0-984 respectively).

Further taxonomic categories could not be separated from the seven derived groups
(Table 3). None of the following could be separated; rodents from non-insectivore
mammals, diptera from any non-social insect group, ants from termites nor gastropod
from pelecypod mollusca. However splitting the non-social invertebrates into arthropods
and non-arthropods gave significant separation but with generally wider confidence
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FIG. 1. The relationship between respiration and production (both as log;o cal m~2 yr—1)
in natural populations of animals. The regression lines, not adjusted for common slope, of
the seven derived groups (Table 2) are shown. The points for Perognathus penicillatis and
P. baileyi (Appendix) are not plotted. The lines are numbered 1 = insectivores, 2 = small
mammal communities, 3 = birds,4 = other mammals, 5 = fish and social insects, 6 =
non-insect invertebrates and 7 = non-social insects. The symbols denote: [ insectivores,
(@ small mammal communities, Jlij other mammals, % birds, + fish, x social insects, O

molluscs, @ Crustacea, ¥ other non-insect invertebrates, A Orthoptera, A Hemiptera,

V other non-social insects.

intervals than the separation into non-social insects and non-insect invertebrates (95%;
confidence intervals of P at R = 1 and R = 6 respectively: non-social insects, +0-596
and +0-597; non-insect invertebrates, +0-871 and +0-806; arthropods, +0-694 and
+0-693; non-arthropod invertebrates, +1-073 and +0-861). The former division is
therefore retained.

Habitat

Data for the non-social insects, non-insect invertebrates and both groups pooled could
not be separated according to habitat type (aquatic v. terrestrial) and all gave common
lines (Table 3).
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Life stage

Studies conducted on the larval stages only of the non-social insects would be expected
to have higher P/A than those studies covering all life stages. Separation of the data by
these criteria resulted in common regression lines (Table 3).

Duration of life cycle

Insufficient data are present to separate the non-social insects into long and short lived
species. No separation was possible (common intercept; P = 0-273) between the long
lived (> 2y) and short lived (< 2y) invertebrates (excluding social insects). However,
arthropods are divisible into short and long lived species giving parallel (P = 0-079) but
separate (P = 0-016) lines (Table 3).

Trophic type

The non-insect invertebrates could be separated into three trophic types; when the
intercepts were calculated from the common slope for the three groups (b = 1.013 +
0-0572) the efficiency P/A is greatest for detritivores (a = —0-346), intermediate for
carnivores (a = —0-521) and least for herbivores (a = —0-696). The non-social insects
had common slopes with a marginal level of probability for the intercepts (P = 0-102);
again herbivores had the lowest efficiency P/A but carnivores were intermediate.

Respiration as the dependent variable

Regression statistics for the original fourteen taxonomic groups are presented in Table
4. All the relationships are significant (P < 0-003) but the slopes are not common (P =
0-012). Removal of the data for insectivores and molluscs yields parallel lines (P = 0-130)
with a common slope of v = 0-997 + 0-019 which does not differ from 1.0.

Analysis of the lines as before yields the same seven groups (Table 5) previously derived
but with non-parallel lines (P = 0-044). Exclusion of the insectivore data yields parallel
lines (P = 0-061) with a common slope (v = 1-012) not different from unity. Further
analysis confirms the taxonomic divisions previously found as well as those for life cycle
duration, habitat and trophic type. Non-insect invertebrates again separate into carni-
vores, detritivores and herbivores with P/A decreasing in that order. Trophic separation

TABLE 4. Regression statistics relating annual respiration (log;o R calm~2 yr-1)
to production (log;o P cal m~2 yr~?) in animal populations. Community studies
for birds and small mammals are included

Standard error Significance of
Group Regression equation N intercept slope slope from 1-0
1. Insectivores R = 1.510P + 1.563 6 0-201 0-225 NS
2. Mice R =0992P + 1-392 24 0-348 0.088 NS
3. Voles R = 0-789P + 2-039 21 0-193 0-076 <002
4. Other mammals R = 1.018P + 1-483 14 0-332 0-083 NS
5. Small mammal R = 0-619P + 2:623 8 0-275 0-163 NS
communities
6. Birds R = 1.178P + 1.521 9 0-156 0-177 NS
7. Fish R = 1-117P + 0-574 9 0-227 0-114 NS
8. Social insects R = 0-694P + 1-816 13 0-534 0-189 NS
9. Orthoptera R = 0-982P + 0-203 23 0-246 0-092 NS
10. Hemiptera R = 0-922P + 0-365 14 0-405 0-070 NS
11. All other insects R = 0-993P + 0-179 24 0-263 0-046 NS
12. Mollusca R = 0-716P + 1-775 45 0-326 0-065 <0-001
13. Crustacea R = 0-969P + 0-607 9 0-259 0-110 NS
14. Other non-insect R = 0-812P + 1-041 19 0414 0-086 <005

invertebrates
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TABLE 5. Predictive regression equations relating annual production (log;, P cal

m-2yr-?) to respiration (logio R calm~2yr-!) in animal populations. GM

regressions, which better estimate the slope, are given below each predictive
equation; statistics relate to the latter

standard error Significance of
Group Regression equation N intercept  slope slope from 1.0
1. Insectivores R = 1.510P + 1-572 6 0-200 0-2251 NS
R = 1.576P + 1.493
2. Birds R = 1.176P + 1-524 9 0-156 0-1766 NS
R = 1.266P + 1-335
3. Small mammal R = 0:619P + 2-623 8 0-275 0-1635 NS
communities R = 0-737P + 2-387
4. All other mammals R = 1.007P + 1-466 56 0-308 0-0465 NS
R = 1.067P + 1-349
5. Fish and social insects R = 0-839P + 1.504 22 0-450 0-1015 NS
R = 0-959P + 1.187
6. Non-insect invertebrates R = 0-856P + 1-088 73 0-369 0-0446 0-01 > P > 0-001
R = 0-937P + 0-767
7. Non-social insects R = 0-963P + 0-271 61 0-287 0-0322 NS
R = 0:994P + 0-169

Common slope for groups 2-7: b = 0-923 + 0-018, v = 1-007
Common slope for groups 4-7: b = 0-932 + 0-018, v = 0-999

TABLE 6. Regression equations relating annual population respiration (log;o R

calm~2yr-1) to production (logio Pcalm~2yr-1) for all significant groups

calculated from the common slopes for P (b = 0-942 + 0-021) and R (b =

0-923 + 0-018) as dependent variables. The intercepts for a slope of 1-0 are given

in parentheses. Slopes (v) for GM regressions, approximated from weighted mean
correlation coefficient, are 1-013R and 0-992P

Group Regression equations

Insectivores P = 0-942R — 1-917 (—2-151) R = 0:923P + 2-180 (2.099)
Birds P = 0-942R — 1-664 (—1-895) R = 0-923P + 2-057 (1-895)
Small mammal communities P = 0-942R — 1-639 (—1-864) R = 0-923P + 2-016 (1-864)
Other mammals P = 0-942R — 1.281 (—1-480) R = 0-923P + 1-632 (1-480)
Fish and social insects P = 0-942R — 0-863 (—1-078) R = 0-923P + 1-282 (1-078)
Non-insect invertebrates P = 0-942R — 0-252 (—0-513) R = 0-923P + 0-821 (0-513)
Non-social insects P = 0-942R + 0-056 (—0-435) R = 0-923P + 0-399 (0-144)
Non-insect invertebrates:

Herbivores P = 0-942R — 0-366 (—0-635) R = 0-923P + 0-941 (0-635)

Carnivores P = 0-942R — 0-283 (—0-476) R = 0:923P + 0-695 (0-476)

Detritivores P = 0-942R — 0-019 (—0-285) R = 0-923P + 0-626 (0-285)

of the non-social insects is again marginal (P = 0-058) with the same rank order of
efficiency found previously when the intercept was calculated from the common slope
for the three groups.

Regression equations for the derived groups are presented in Table 6 for both P and R
as the dependent variable ; intercepts are given for a slope of 1-0 as well as those calculated
from the common slope.

Production efficiency and the magnitude of P or R

We are concerned here with the slope of the regression lines; as both variables are
taken as logarithms (simple allometry relationship) then a slope of unity shows that the
magnitude of P or R has no effect on production efficiency (P/(P + R) = P/A). By
attempting to group the data I am looking for law-like relationships between P and R
where both are subject to error and have random variability (functional relationships
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sensu Sprent 1969). No independent estimate of the variance of P and R is available in
energy budgets so no maximum likelihood estimate of the slope is possible (Sprent 1969).
However, the range of the slope for R can be calculated; it lies between the slopes for R
as the independent variable and as the dependent variable (in the latter case derived
from reciprocal slope P). The range for slope P can be derived in a similar manner.

Taking the specific case of the common slopes in Table 6 the slope ranges between
0-942R~-1-083R (i.e. 1/0-923) or 0-923P-1-062P (i.e. 1/0-942) with mean slopes of 1-013
and 0-993 respectively. In general because the slopes are less than 1.0 whether R or P is
treated as the dependent variable the range of slope in each case includes 1-0.

The most appropriate estimate of the slope for data of this type is v of the GM regress-
ion. In each case v is close to 1.0; while exact confidence intervals are unavailable for v
calculated from the common slope, they would have to depart widely from those for b
in the predictive equations to show significant departure of the slopes from unity.

In neither of the above treatments is there any evidence that the slope departs from
unity; the magnitude of P or R has no effect on production efficiency.

Production efficiency and weight

Regression of maximum live weight (log,, pg) of the animals against their production
efficiency gave the following levels of significance (N): insectivores, P = 0-144(6); other
mammals, P = 0-462(52); fish, P = 0-290(7); non-social insects, P = 0-118(52); non-
insect invertebrates, P = 0-490(31). No significant relationship exists between these two
variables.

Production efficiency

The mean production efficiency (P/A) is shown for various groups in Table 7 irrespec-
tive of the absolute magnitude of P and R. The seven derived groups have significant
heterogeneity as do the trophic groups within the non-insect invertebrates. The rank order
of production efficiency between the trophic classes for the non-insect invertebrates and
the non-social insects is the same as in the previous analyses. However, the between
trophic class variances are homogeneous for the non-social insects and the herbivores are
clearly separated from the carnivores (SNK: P < 0-05) but not from the detritivores;
herbivores have the lowest production efficiency.

DISCUSSION

This analysis considerably extends previous analyses of the relationship between annual
population production and respiration in animal populations (McNeill & Lawton 1970;
Shorthouse 1971; Grodzinski & French in Grodziriski & Wunder 1975). Homoiotherms
separate from poikilotherms (McNeill & Lawton 1970) but clear separation is possible
within these two groups.

Homoiotherms separate into three (insectivores, birds and other mammals) and
possibly four (small mammal communities) groups. Grodzirisky & French in Grodzifiski
& Wunder (1975), taking P as the dependent variable, showed that the slopes for insecti-
vores and rodents were different. I was unable to separate rodents from other non-
insectivore mammals; when the latter two groups were pooled the slope did not differ
when y = P but did so differ when y = R. Although insectivores were included in the
small mammal community budgets, in only 2 (Hansson 1971) of the 8 budgets were
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TABLE 7. Mean production efficiency (P/A) ranked in order of increasing

efficiency. Statistics were calculated using arcsine 4/x transformation and have

been reconverted for this table. Vertical lines next to the trophic types include

statistically common groups using Student-Newman-Keuls a posteriori test for
unequal sample sizes

Standard Coefficient of
Group P/IA Y error N variation

1. Insectivores 0-86 0-109 6 35.6
2. Birds 1.29 0-030 9 15.3

3. Small mammal 1-51 0-126 8 28-8

communities

4. Other mammals 3.14 0-278 56 29-6

5. Fish and social insects 977 0-890 22 297
6. Non-insect invertebrates 250 3.671 73 36-8
7. Non-social insects 40-7 2:036 61 20-7
Non-insect invertebrates:

8. Herbivores 20-8 1-38 15 249
9. Carnivores ! 27-6 5-09 11 41-2
10. Detritivores 36-2 4.82 23 34.3
Non-social insects:

11. Herbivores |38~8 1.93 49 20-7
12. Detritivores | 470 1-64 6 17-0
13. Carnivores 55-6 0-64 5 9.5

Groups 1-7: Homogeneity x? = 127-48 P < 0-005; Anova, F = 97.83,

P < 0-001. Groups 8-10; Homogeneity x? = 6-315,0.05 > P > 0-025;

ANOVA, F = 3.541, 0-05 > P > 0-025. Groups 11-13: Homogeneity x =

1-608; 0-5 > P > 0-1; aNova, F = 4.230, 0-025 > P > 0-01. Groups 1, 3

and 4: Homogeneity x> = 1.212,0.9 > P > 0-5. Group1 = 3,1 # 4,3 # 4
(SNK P <0-05).

sufficient insectivores present to affect markedly the community P/A ratio. Comparison
of the methodologies used to derive community and single species budgets is beyond the
scope of this paper but separation of community from single species budgets in mammals
does raise questions as to the validity of the bird line which is based mainly (7 of 9
budgets) on community studies.

Poikilotherms separation clearly into three groups (fish and social insects, non-insect
invertebrates and non-social insects). The latter two groups could also be separated into
arthropod and non-arthropod species but the resulting regressions had wider confidence
intervals so I have retained the former division.

The arthropods but not the invertebrates (both excluding social insects) could be
separated into long and short lived species and the latter had the lower production
efficiencies. This separation is mainly due to the long lived arthropods belonging to the
non-insect invertebrate group which have already been separated from the non-social
insects. However, many of the former group are molluscs which probably have long life
cycles but have been excluded from the analysis as insufficient information is available
in the sources. The separation of the non-insect invertebrates from the non-social insects
may be due to the difference in average life cycle within the groups; but this is probably
not the case as two other groups (crustacea and general invertebrates), despite both
containing mainly short lived species, are not separable from the molluscs. While
accepting McNeill & Lawton’s (1970) arguments concerning the effects of longevity and
cost of overwintering stages on production efficiency it would appear that the resolution
of the budgets is insufficient to distinguish the effects. The separation of insects from
other invetrebrates appears to be real and not a function of trophic type, longevity or
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habitat. Insects are not the ‘particularly poor converters’ suggested by Calow (1977), at
least in natural populations.

Shorthouse (1971) separated aquatic from terrestrial poikilotherms; I was unable to
separate any of the invertebrate groupings (excluding social insects) according to habitat.
This again indicates the low resolution of energy budgets as terrestrial insects (mainly
orthoptera and hemiptera) tend to have low cost resting stages (eggs) while aquatic
species tend towards high cost overwintering stages (larvae). In this they contrast with the
non-insect invertebrates which mostly fall into one group with high cost overwintering
stages (mollusca, crustacea and arachnids) and are longer lived.

I present the groups only as the best available division for predictive purposes; when
more data are available some of my groupings may be shown to result from the distribu-
tion of data presently available and it may be possible to more clearly describe the effects
of habitat, longevity, trophic type and taxa on the relationship between P and R.

With either P or R as the dependent variable the non-insect invertebrates separate into
trophic categories (detritivores, herbivores and carnivores: for y = P, P = 0-038; for
y = R, P = 0-022) with the main contribution to the separation being between herbivores
and detritivores (P = 0-006). The same comparison for the non-social insects gave
marginal significance in each case (for y = P, P = 0-102; for y = R, P = 0-058). When
the intercepts were calculated for the common slope within each analysis herbivores had,
in each case, the lowest production efficiency (P/A) and carnivores the greatest in three of
four analyses. When trophic comparisons were made directly from P/A without regard
to the magnitude of P or R (Table 7) rather similar results were obtained ; however the
analysis was strengthened for the non-social insects which gave significant separation
while having homogeneous variances between trophic groups. These results do not
support the contention that detritivores have low P/A because of their poor quality food
(Macfadyen 1967), that P/A is inversely related to trophic level (Kozlowski 1968) or that
high conversion efficiency is associated with herbivory (Calow 1977).

While it has been possible to separate objectively a number of groups with differing
production efficiencies there is no longer the clear separation of homoiotherms and
poikilotherm data (Fig. 1) seen in McNeill & Lawton (1970: Fig. 1). The production
efficiencies of animal populations form a continuum and there has been no quantum
jump between poikilotherms and homoiotherms in the evolution of production efficiency.

Any departure of the slope of the regression equations from unity would imply that the
magnitude of P or R affects the production efficiency; if this were the case some cogent
theory would be needed to account for the effect. The common slope for the original
fourteen taxonomic groups (y = P) does not differ from unity nor does that for the
twelve parallel lines when y = R. In contrast to McNeill and Lawton (1970) who found
the slope for the short lived poikilotherms but not the homoiotherms had a slope differing
from 1.0, I find the reverse to be the case. Using the more appropriate GM regressions it
is clear that the slopes do not differ from unity; when many species are considered the
magnitude of P or R does not influence production efficiency. Intraspecific effects are
considered later.

McNeill & Lawton (1970) suggested two reasons for the departure of their regression
from unity for short lived poikilotherms; animals for some reason limited to low produc-
tivity may compensate by having maximum production efficiency, or the slope may
reflect the distribution within their analysis of data from species of differing longevity and
overwintering costs. Several factors may influence P/A : the energetic cost of competition
may increase at high intraspecific productivity levels where species numbers are reduced



440 Production and respiration in animal populations

and competition tends to be intraspecific and should be most intense; conversely P/A
may be reduced in rare species (low density and low productivity) by the energetic
requirements of finding resources. Such hypothesis are relative to the species concerned.
If productivity influences P/A then different species should be affected over different
ranges of P or R depending on their normal values for population density or productivity.
The sum effects on the regression lines would not be expected to cause the slope to depart
from unity.

The size class structure of a population has an identifiable effect on P/A ; young animals
tend to have greater P/A than old ones (Calow 1977) so that growing populations with a
high proportion of young individuals have greater P/A than stable or declining popula-
tions. While this should not cause a departure of the regression from unity, at least
within one metabolic class of animals, it may explain the separation of the non-social
insects from the non-insect invertebrates. The former tend to have individuals developing
rapidly from eggs within one or two seasons and short reproductive life which should
give high P/A; most non-insect invertebrates do not have this phenology and would
have lower P/A.

The firmest evidence I have shows that the slopes of the regression equations do not
depart from unity; until a body of theory is developed and firm empirical evidence
obtained to suggest otherwise, I recommend the use of a slope of 1.0 for all the predictive
equations in Table 6.

It has been suggested that P/A is greater in high density populations (high production)
(Bobek 1969; W. Grodzinsky & N. R. French personal communication). Examination
of the trend in the relationship between P/A and P in species for which there are available
more than two energy budgets does not support this contention. Five of seven homoio-
thermic species show no trend in the relationship while six of eleven poikilothermic
species have a direct relationship and three have no trend in the relationship.

None of the five taxa considered showed a significant relationship between adult live
weight and production efficiency. The increased efficiency of resource utilization sug-
gested (Cody 1966) for more K-selected and hence larger (Southwood 1976) species is
not achieved through changes in production efficiency (or P/C; unpublished) within
the groups I considered. In addition the field data do not support Fenchel’s (1974) view
that R/A is directly related to body size.

Despite the larger data base used here the confidence intervals within any regression
line do not improve on those of McNeill & Lawton (1970) and in some cases they are
wider. Nevertheless the predictive power of the regressions is improved by there being
more specific metabolic groups from which to choose. While the failure to improve on the
confidence intervals partly reflects my lack of data selection they are a real measure of the
innate variability of energy budgets and of the variance introduced by differing method-
ologies and assumptions. Methodological differences may give at least a twofold variation
in the estimate of R (Humphreys 1978); this would give 1-59-1-77 and 1-76-1-84 fold
variation in P/A for non-social insects and non-insect invertebrates at production
efficiencies in Table 7. This variation compares with 2-7 and 3-2 fold variation in P/A
within the 95%; confidence intervals in Table 6 for non-social insects and non-insect
invertebrates respectively. These methodological differences prevent any true measure
of within group plasticity of P/A in animal populations. The contention that the noise
introduced into energy budgets by methodological differences may prevent separation
of many groups (Humphreys 1978) is clearly incorrect. However, the resolution is low and
some subdivisions that would be expected cannot be found.
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CORRIGENDUM

To: Humphreys, W.F., 1979. Production and respiration in animal populations. Journal of Animal
Ecology 48: 427-453.

On page 439 both references to Calow (1977) are incorrect and should be deleted. Calow was
referring to individual efficiencies and not population efficiencies as implied by the context.
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news and views

Production and respiration in animal communities

Jrom Robert M. May

A WIDELY-quoted generalisation about
natural ecosystems is that the efficiency of
energy transfer from one trophic level to
the next is around 10%; that is, about 10%
of the net production of plants ends up as
net production of herbivores, about 10%
of this makes its way into net production
of the first level of carnivores, and so on.
The generalisation is largely based on
studies of freshwater lakes and of
laboratory aquaria, conducted in the
1950s. One early articulation of this notion
is in Slobodkin’s elegant and influential
Growth and Regulation of Animal
Populations (Holt, Rinehart and Winston;
1961), where his speculative list of
candidates for valid ecological generalities
leads off with ‘‘Food-chain efficiencies
and ecological efficiencies in nature are
approximately constant for all species’”.

Unfortunately, subsequent research on
terrestrial and on other kinds of aquatic
communities has overthrown this
appealing generalisation, showing that the
efficiency of energy transfer from one
trophic level to the next can vary very
widely. This is a pity, for valid ‘ecological
laws’ are thin on the ground, and we can il
afford to lose any of the few we thought we
had.

To determine overall efficiencies of
energy transfer, two questions must be
answered. First, what fraction of the net
production at one trophic level is actually
assimilated by creatures at the next level?
Second, how do these creatures apportion
the assimilated enmergy between net
production (growth and reproduction) and
respiration (maintenance costs)? The
second question is amenable to fairly
precise answers, but the first question is
messier, as it can involve both
particularities about the fraction of
material that is assimilated rather than
excreted by a given species and generalities
about the overall fraction of net
production at one level that is actually used
(consumed) by the next level. Some of these
problems and ambiguities can be made
more explicit by considering, say, mice and
weasels. If we focus on the weasels, it is in

Robert M. May is Class of 1877 Professor of
Zoology at Princeton University.

0028-0836/79/480443-02801.00

principle straightforward to determine the
efficiency with which 1 gram or 1 calorie of
mouse eaten is transformed into grams or
calories of weasel. If we focus on the mouse
population, it is hard to determine what
fraction of their total biomass appears as
net production in the next trophic level.
Indeed, the answer ultimately depends on
how we keep the books; the very notion of
‘trophic level’ does not stand up to close
examination (where, for example, do the
decomposers belong?).

Humphreys (J. Anim. Ecol. 48, 427;
1979) has recently drawn together a large
body of literature, to determine the
relationship between annual production P
and respiration R in natural populations of
animals. This synoptic study sheds light on
the general issues discussed above. It also
has more immediate practical applications.
If a relation between P and R can be
confidently established for a given group of
organisms, then for a species in this group
only one of the two quantities need be
measured directly, which can be a helpful
short-cut in compiling energy budgets for
communities; several people have used the
earlier study by McNeill and Lawton
(Nature 225, 472; 1970) for this purpose.
Humphreys analyses a total of 235 energy

budgets culled from the literature, and he
emphasises that a great variety of different
assumptions and possible biases have gone
into the individual studies.

Examining regression relations between P
and R, Humphreys shows that homeotherms
(loosely, warm-blooded animals) can be
separated into four significantly different
groups: insectivores; birds; small mammal
communities; and other mammals.
Poikilotherms (cold-blooded animals)
separate into three groups: fish and social
insects; non-insect invertebrates; and non-
social insects. The invertebrate groups
further permit significant separation into
trophic categories of herbivores,
carnivores and detritus feeders. In no case
is the relation between P and R
significantly different from a simple linear
one. The fruits of Humphreys’ analysis are
summarised in Table 1, which shows the
mean ‘production efficiency’ P/(P+ R) or
fraction of assimilated energy (4 =P+ R)
that is devoted to net production, for the
various groupings.

Several interesting patterns emerge.
Both for non-insect invertebrates and
insects other than social insects, the
production efficiency is significantly lower
for herbivores than for carnivores and

Table 1 Mean production efficiency, P/(P + R), for various groups of animals.

Group

Mean production

Sample size

efficiency (per cent)

Insectivores

Birds

Small mammal communities
Other mammals

Fish and social insects
Non-insect invertebrates
Non-social insects
Non-insect invertebrates

herbivores
carnivores
detritivores

Non-social insects
herbivores
detritivores

carnivores

0.9 6
1.3 9
1.5 8
3.1 56
10 22
25 73
41 61
21 15
28 11
36 23
39 49
47 6
56 5

©1979 Macmillan Journals Ltd
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Table 2. The assimilation efficiencies, or percentage of plant production consumed by feeding-

animal species, for various systems.

Plant Consumers Percentage of
productivity consumed

Beech trees Invertebrates 8.0
Oak trees Invertebrates 10.6
Maple-beech trees Invertebrates 6.6
Maple-beech trees Invertebrates 5.9
Tulip-poplar trees Invertebrates 5.6
Grass + forbs Invertebrates 4-20
Grass + forbs Invertebrates <0.5
Alfalfa Invertebrates 2.5
Sericea lespedeza Invertebrates 1.0
Grass Invertebrates 9.6
Aquatic plants Bivalves 11.0
Agquatic plants Herbivorous animals 18.9
Algae Zooplankton 25.0
Phytoplankton Zooplankton 40.0
Marsh grass Invertebrates 7.0
Marsh grass Invertebrates 4.6
Meadow plants Invertebrates 14.0
Sedge grass Invertebrates 8.0

detritus feeders. A plausible explanation is
that biochemical conversion efficiencies
are higher for animals eating other animals
than for animals eating plants. Other
patterns are shown by Humphreys to be
conspicuous by their absence: there is no
significant correlation between production
efficiency and the magnitude of
production (that is, no correlation between
P/ﬁ and P or R); there is no correlation
between production efficiency and animal
weight; and, with the groups set out in
Table 1, species with different habitats
(aquatic and terrestrial) do not have
significantly different production
efficiencies. Humphreys makes the further
point that ‘‘there is no quantum jump in
production efficiency between
poikilothermic and homeothermic
animals”’, but I think Table I suggests such
a distinction is real (with homeothermic
production efficiency typically in the range
1-3%, poikilothermic in the range
10-40%). Admittedly the scatter around
the mean values for a given group is such
that some social insect species have
production efficiencies lower than some
mammal species, so that there is no
‘quantum jump’ between homeotherms
and poikilotherms, but the tendency for
the typical poikilotherm to have a
production efficiency an order of
magnitude larger than that of the typical
homeotherm remains. Warm-blooded
beasts pay a noticeable cost, relative to
cold-blooded ones, in order to keep their
metabolic machinery ticking over at.a
constant temperature.

For a community of interacting species,

0028-0836/79/480444-02501.00

we can get some idea of the overall ‘food-
chain efficiency’ with which energy flows
from one trophic level (n) to the next
(n+1), by combining the mean pro-
duction efficiencies at level 7 + 1(P, . /A, 1)
with estimates of the fraction of the
productivity at level n that actually is
consumed (the assimilation efficiency,
A,,,/P,). Pimentel, Levin and Soans
(Ecology 56, 381; 1975) have brought
together several rough estimates of the
percentage of plant production that is
consumed by the animal species that feed
upon it; their compilation is summarised in
Table 2. As mentioned above, any such
estimates of assimilation efficiencies
suffer, inter alia, from the arbitrariness
inherent in a crude classification into
‘trophic levels’. Convolving Table 1 with
Table 2, we see that food-chain efficiencies
can vary over two or more orders of
magnitude, from less than 0.1% to more
than 10%.

In the early 1960s, the tentative ‘10%
rule’ engendered enthusiasm for ecological
generalisations. The subsequent collapse
of the rule, giving way to the complicated
variety of patterns shown in Table 1, has, in
my opinion, led to an excessive
disenchantment with such generalisations.
I think the time is ripe to return to these
questions, trying to understand the
patterns documented by Humphreys and
others, both from ‘below’ (in terms of
thermodynamic constraints on production
efficiency in different kinds of animals)
and from ‘above’ (in terms, for example, of
the possible constraints that energy flow
may impose on food web structure). O
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Order in amorphous
polymers

JSfrom Paul Calvert

Tue extent of order in the amorphous state
of polymers has been debated for many
years. Likening the polymer melocules to
strands of spaghetti it is difficult to see how
they can be packed to high densities unless
the strands are largely arranged parallel to
their neighbours. After the Chemical
Society’s recent Faraday Discussion* on
Organisation of Macromolecules in the
Condensed Phase the situation seems much
clearer than two years ago (see News and
Views, 271, 507; 1978).

Two types of order have been postulated
for amorphous and glassy polymers, the
orientational correlations just mentioned
and local density fluctuations with regions
of tight packing separated by a less dense
matrix or by boundary zones. The latter
were apparently demonstrated by Yeh and
Geil about 10 years ago. They observed 2.5
nm nodular structures in many glassy
polymers with electron microscopy in
bright and dark field as well as in fracture
surface replicas. At the recent meeting
D.R. Uhlmann (Massachusetts Institute of
Technology) reviewed his small angle
X-ray scattering (SAXS) results which
show only enough scattering to be
consistent with the small thermal
fluctuations in density, frozen in at the
glass transition temperature in
polymethylmethacrylate, polyethylene
terephthalate, polycarbonate, polyvinyl
chloride and polystyrene (PMMA, PET,
PC, PVC, PS). This does not eliminate the
possibility of heterogeneities whose density
differs significantly from the bulk density
but they must be present in very small
quantities. Uhlmann also concluded that
the bright and dark field electron
microscope observations of small nodules
were due to electron diffraction effects.

Thus the ‘typical’ amorphous polymers
are essentially homogeneous. Epoxy resins
are not but SAXS cannot distinguish
between small quantities of voids and
larger quantities of low or high density
nodules. G.C. Stevens (CEGB,
Leatherhead) said that small aggregates
could be detected in unreacted liquid epoxy
resins by light scattering. P.H. Geil (Case
Western Reserve,University) pointed out
that he had seen annealing of nodular
structures in amorphous polyethylene (PE)
and in plasticised and unplasticised PVC. It
does seem reasonable that crystallisable
polymers such as PE should form
crystalline nodules at low temperatures.
PVC is frequently partly crystalline and its
structure is most dependent on the
polymerisation conditions, so any strange
behaviour is plausible, and important, in
this polymer.

Thus there are heterogeneities in some
systems and possibly in small amounts in
*Held at the University of Cambridge, 25-27 September, 1979,
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