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Journal of Animal Ecology (1981), 50, 543-561

TOWARDS A SIMPLE INDEX BASED ON LIVE-WEIGHT AND
BIOMASS TO PREDICT ASSIMILATION IN ANIMAL
POPULATIONS

By W. F. HUMPHREYS*

School of Biological Sciences, Bath University, Claverton Down,
Bath, Avon BA2 1AY, England

SUMMARY

(1) Using published data on energy budgets a simple index is used to derive equations
predicting assimilation or production in animal populations.

(2) The index is based on the commonly measured parameters of mean annual biomass
(cal m2?) and maximum live-weight (mg). The index (7,) is: mean annual biomass
(cal m~2)/maximum live-weight (mg)®""5.

(3) The available data relating I, to assimilation can be grouped into five taxonomic
categories; homoiotherms (excluding mice and voles), mice and voles, fish, invertebrates
(excluding ants), and ants.

(4) The invertebrates can be separated by both life-cycle duration (<2 years and
>2 years) and habitat (aquatic and terrestrial) but too few data are available to analyse
separately the combined effects of habitat and life cycle duration.

(5) Seven parallel regression lines are derived relating the index (log 7,,) to assimilation
(log A cal m—2year—!). These lines account for 93% of the variance in the data.

(6) The relationship between the index (log I,,) and production (log P cal m~2 year—!)
is used, with previously derived equations relating production and respiration, to predict
assimilation. It accounts for 91% of the variation in the data.

INTRODUCTION

Determination of an energy budget for a natural population of animals is complex,
protracted and expensive. It is possible to construct community energy budgets but it is
only practicable for quite simple communities. Even in studies of single species the reli-
ability of the data collected, when combined to produce an energy budget, is usually
uncertain and the variability in different years and between different populations seldom
determined. These problems result from the quantity of information required for the more
sophisticated energy budgets, methodological differences between studies (Humphreys
1978), poor resolution in time for some of the parameters required (especially population
changes and the seasonal characteristics of respiration) and from the extrapolation of
laboratory determined measurements to natural populations.

To derive first order estimates of energy flow through different communities powerful
predictive models are required to circumvent the need for energy budgets for all the
component species. Some models have been derived (e.g. turnover rate; Zaika &
Malovitskaya 1967; Mathias, personal communication in Mann 1969; Waters 1969)
but most concentrate on the relationship between production and respiration (Engelmann
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544 Index predicting assimilation in animal populations

1966; Golley 1968; Hughes 1970; McNeil & Lawton 1970; Shorthouse 1971; Lévéque
1973; Grodzinski & French in Grodzinski & Wunder 1975; Jensen 1978; Humphreys
1979). Using this relationship seven distinct metabolic groups have been derived
(Humphreys 1979). The predictive power of these regressions accounted for between 71%
and 95% (mean 86%) of the variance in the data. However, both production and
respiration are difficult to determine in most natural populations and require a high level of
information on growth rate, population structure and metabolic plasticity if they are to
achieve an acceptable degree of accuracy.

There is clearly a need for predictive equations based on parameters more easily
determined in natural populations and it is to this problem that the paper is addressed.
The prediction of population respiration from mean biomass (Phillipson 1970), separation
of different metabolic groups of animals with respect to production efficiency (P/4;
Humphreys 1979) and of different individual metabolic rates between taxa (Hemmingsen
1960) suggest that assimilation should be predictable from biomass information. I use here
crude measurements, biomass and maximum live-weight, to derive equations predicting
assimilation in natural populations: Index =I,=mean annual biomass (cal m~2)/
maximum live-weight (mg)®7® which includes some measure of population density
corrected for individual metabolic capacity. The dimensions of the index are strange
(cal m~2 mg=%"%) but if the caloric measurement is converted to a gravimetric measure
the inverse dimensions (mg~%"2* m?) take the familiar form of a weight specific metabolic
allometric relationship.

As both live-weight and biomass are easily determined and are commonly collected
in many field studies, if only for book-keeping purpose, any predictive power the index
may show should be of widespread use.

MATERIALS AND METHODS

I follow the terminology of Petrusewicz & Macfadyen (1970) to depict the relevant
components of energy budgets, namely R (respiration), P (production), B (biomass) and
A (assimilation; 4 = P + R) all in caloric units.

Energy budgets for natural populations were extracted from the literature. Biomass
and live-weight data were included if they were explicit in the original paper or could be
calculated from illustrations or from tables of the structure, biomass and duration of
size classes. Of the 235 budgets used previously (Humphreys 1979) only 100 contained
additional information on biomass and live weight and these form the data for this analysis
(Appendix). The same conversion factors and exclusions were used as described elsewhere
(Humphreys 1979).

The data were originally grouped for analysis according to the seven derived groups
based on P and R (Humphreys 1979) except that there were no data for ‘small mammal
communities’ and that fish were separated from social insects (ants in this case) as they
were, on inspection, clearly different with respect to the relationship between 7,, and 4.

Least squares regressions were calculated for the relationship between log I, and
log 4 in each group taking assimilation as the dependent variable. The lines were compared
using the analysis of variance procedure of Davies & Goldsmith (1972; Table 7.7).
Analyses were conducted to test four relationships within and between the regression
lines of the form log y = a + b log x. Firstly whether x and y were correlated and the slope
(b) of the equation differed from zero. Analysis continued to test whether the two (or
more) regression lines had similar slopes (P > 0-05); if the slopes were statistically
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similar the lines were tested for a common intercept (a). If the intercepts were similar
(P > 0-05) the data were pooled, otherwise (P < 0-05) they were treated as separate
groups. In this manner all groups were tested against adjacent groups before pooling.

The data for the invertebrates only were subdivided according to habitat (aquatic v.
terrestrial), trophic type (herbivore v. carnivore v. detritivore) and life-cycle duration
(short-lived <2 years and long-lived >2 years) in a separate analysis to attempt to
assess the effect of these factors on the relationship, as all have been suggested as groups
by various workers (see Humphreys 1979).

A similar, though less extensive, analysis is made of the relationship between the index
(log I,,) and production (log P cal m~2 year™!).

While the original number of data pairs is 100 some analyses are on fewer data as
information about production or life-style was unavailable.

The data are mostly presented as familiar least squares predictive regressions but in the
final grouping the geometric mean estimate of the functional regression of y on x (the
GM regression) is given, in addition to predictive equations, as this gives a better estimate
of the slope for predictive purposes (Ricker 1973) and avoids having to decide on the
relative accuracy of the x and y measurements. Where necessary the common slope (v)
for the GM regression is approximated from the weighted mean correlation coefficient
of the predictive equations.

The iterative procedure used to separate the groups is suspect statistically and is
retained only as an objective method of grouping the data. Consequently the probability
levels cited are inexact and should be viewed with caution.

RESULTS

Relationship between I,, and A

In the seven initial groups assimilation (A4) is significantly regressed against the index
(I,,) with the regressions accounting for between 45% and 100% (mean 79%) of the
variance in the data (Table 1). The regressions are parallel (P =0-70) but not common
(P < 107%). Pairwise comparison of these regressions shows that these seven lines can be
arranged in four groups which are statistically internally consistent, with common slopes
but separate intercepts (Tables 2 & 3). These groups are the homoiotherms, fish, ants
and all other invertebrates.

Further analysis shows that voles and mice (Appendix and Table 3) have common
lines and that after pooling the common regression for voles and mice differs from the

TABLE 1. Regression statistics relating the metabolic index (log 7,,) to assimilation
[log A cal m~2 year~!] in various taxa of animal populations. The lines are parallel
[P = 0-70] but not common [P < 10~5]

Standard Intercept for

Regression error of common slope of

Group equation n  slope F, P r  0-776 + 0.024%
Birds A=09937,+2.346 7 0-194 26-25 0-0037 0-92 2-033
Other mammals A =0-9031,, +2:293 42 0-093 94.25 <10-% 0-84 2.000
Shrews A=1.2017,,+2.803 5 0:326 13-58 0-035 0-91 1-933
Fish A=0-6981, +1.635 8 0-117 35.75 0-001 0-93 1-650
Non-insect invertebrates* A4 =0-6691,,—0-059 25 0-164 18:26 0-0003 0-67 —0-184
Non-social insects* A=0.6281,—0:295 9 0.123 37.33 0-0005 0-92 —0.727
Ants A=1.0161,—1.653 4 0.002 >999 <10-% 1.00 —1.295

* Excluding ants; T Residual standard error of slope.
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TABLE 2. Regression statistics relating the metabolic index (log ,,) to assimilation
[log A cal m~? year—!] in the four separate groupings of animal populations. The
lines are parallel [P = 0-085] but not common (P < 10~%). Below each predictive

equation the GM regression is given

Intercept for

Standard common slope of
Regression error of 0:723 + 0-024*
Group equation n  slope F P r and for v =0.881
Homoiotherms A=0-8931,, +2-254 54 0-076 139-01 <10~* 0-85 1.882
A =1.0471,, + 2-590 2.228
Fish A=0-6981,+ 1635 8 0-117 35.75 0-001 0-93 1-640
A=0-7541,, + 1-646 1-669
Invertebrates (—ants) 4=0:5907,, + 0-037 34 0-100 35.14 <105 0-72 —0-224
A =0-8161,,— 0-405 —0-533
Ants A=1.016I,—1.653 4 0-002 >999  <10-5 1.00 —1-216
A=1-0161,,—1-653 —1.452
* Residual standard error of slope.
TABLE 3. Synopsis of analyses of variance testing for common slopes and
intercepts for some of the regressions relating the index (log I,,) to assimilation
(log A cal m~2 year—!) in animal populations
Test for parallel lines Test for common intercept
F, df. p F, d.f. p Comment
All mammals v. birds 0-01 1,50 0-931 0-13 1,51 0-722 parallel common
Shrews v. other mammals 0-19 1,43 0-663 0-21 1,44 0-652 parallel common
Fish v. ants 0-85 1,8 0.383 154.61 1,9 <103 parallel separate
Non-social insects v. non-insect 0.-09 1,30 0-763 1.97 1,31 0-170 parallel common
invertebrates
Ants v. all other invertebrates 0-30 1,34 0.588 9.86 1,35 0-003 parallel separate
Homoiotherms v. fish 1.24 1,58 0-271 593 1,59 0.018 parallel separate
Voles + mice v. other mammals — 1.52 1,38  0.225 20-30 1,39 0-00006 parallel separate
shrews
Voles + mice v. shrews 0-17 1,32 0-680 0-09 1,33 0.760 parallel common
Shrews v. mammals 0-18 1,12 0-680 2.50 1,13 0-138 parallel common
(—voles & mice)
Aquatic v. terrestrial invertebrates 0-19 1,30 0-665 6-84 1,31 0-0014 parallel separate
(—ants)
Long- v. short-lived invertebrates 0-14 1,29  0.709 17-34 1,30 0-00024 parallel separate
(—ants)
Short-lived terrestrial v. short-lived  0-35 1,13  0-566 0-39 1,14 0-543 parallel common
aquatic invertebrates (—ants)
Long-lived terrestrial v. short-lived 0-17 1,20 0-683 0-65 1,21 0-429 parallel common
terrestrial & long-lived aquatic
invertebrates (—ants)
Short-lived aquatic v. short-lived 0.05 1,21  0-831 1.87 1,22 0-185 parallel common
terrestrial & long-lived aquatic
invertebrates (—ants)
Long-lived terrestrial v. short-lived 0.35 1,13  0-566 0-39 1,14 0-543  parallel common

aquatic invertebrates (—ants)

remaining mammals. The latter group are not distinguishable from either birds or shrews
so the homoiotherms are separated into voles and mice, and the remaining homoiotherms.

Separation of invertebrates by life style

Sufficient information was available for the comparison of life-style only for the

invertebrates (excluding ants).
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Trophic type

Examination of the data for trophic type (herbivore, carnivore or detritivore) for the
insects and the non-insect invertebrates showed that no trophic categories could be
separated from either group or the two groups combined (Table 3).

Life-cycle duration

The invertebrates as a whole could be separated into short- (<2 years) and long-
(>2 years) lived species with the two regression lines being parallel but separate (Table
3). Long-lived invertebrates had greater assimilation rates (7-2 times) for a given level
of I, (Table 4).

Non-insect invertebrates alone could be separated by life-cycle duration (Table 3) with
the long-lived species having greater (11-3 times) assimilation for a given I,, (Table 4).

Habitat

Separation of the invertebrates alone into aquatic and terrestrial species have parallel
but separate regressions (Table 3) with aquatic species having greater (6-1 times)
assimilation rates for a given /,,,.

Habitat and life cycle duration are independent classifications (contingency y? = 0-138,
NS) so we may be reasonably confident that both, independently, influence the regressions.

Separation of the invertebrates by habitat and life-cycle duration partitioned the same
data in two ways. Attempts to separate these data using both life-style criteria together
were frustrated by small sample size resulting in non-significant regressions for short-
lived terrestrial and long-lived aquatic invertebrates. These groups were pooled and the
remaining two groups also retained as separate lines giving three artificial groups (short-
lived terrestrial plus long-lived aquatic, long-lived terrestrial and short-lived aquatic
invertebrates excluding ants); these groups had relative assimilation rates (calculated for the
common slope) respectively of 4:2:2:7:1.0 for a given level of I,,. These three groups are
retained as an expedient to allow the analysis to continue, as comparison of the inverte-
brates as a whole with the other four derived groups results in non-parallel lines (P =
0-023). The reasons for this will be discussed later.

TABLE 4. Regression equations relating the index (log I,,) to assimilation (log 4 cal
~% year™') in invertebrate populations with differing life-cycle duration and
habitat. All comparisons exclude ants

Standard
Regression error of Intercept for
equation n  slope F, P r common slope
Short-lived invertebrates 4 =0-771/,,—0-816 14 0.102 5691 <10=° 0.91 —0.741
Long-livedinvertebrates 4 =0-7027,,+ 0-178 19 0-150 21.96 0.0002 0-75 0-118

lines are parallel (P =0-709) but not common (P = 0-0002). Common slope is
0.741 + 0-081*

Aquatic invertebrates A4=0-3997,,+0-730 20 0-105 14-35 0-001 0-65 0:649

Terrestrial invertebrates 4 =0-5087,,—0-236 13 0:177 8.20 0-015 0:65 —0-139
lines are parallel (P =0-589) but not common (P =0-001). Common slope is
0-432 + 0-079*

Non-insect invertebrates:
Short-lived =1.0261,,—1-362 7 0-249 16-99 0-009 0-88 —0-930
Long-lived =0 7391 +0-200 17 0-147 25-19 0-0002 0.79 0-122
lines are parallel (P =0-396) but not common (P = 0-00037). Common slope is
0.790 + 0-124*

* Residual standard error.



ons

n animal populati

ilation i

ing assimi

Index predict

548

s-01>
01>
§00-0
S¥0-0
100-0
s-01>
1000-0

d

666<
¥8:901
6781
8-y
SL-SE
L9-£0€
79-§T

s

A

L100°0
-0
wr-0
L88-0
£1€-0
792-0
L0S-0

vV

200°0
¥90°0
SEI-0
9¢€-0
LIT-0
0900
£€1-0

adogs

10113 pIepue)s

w1
IL0-¢
6€1-1
6vL-1
S81-0—
60T-¢—
(49 84

“T uespy

9¢€1-0—
199-1
§85-0
1921
9051
9¢1-0
§¢s-0

¥ uesy

91

§%
X4

u

0001
696-0
8980
LOS-0
§76°0
§56°0
IvL-0

JUSIOYJ209
uone[alIo)

OYS-1-)€59°1 — 38 ~
(L6T 1)ES9°T — ES ﬁ
(0€T1)EEY 0 — Rwo o
(LTL0)69E-0— :3 o
(L8Y-0—)TLI-0— ES o
(10€£-0—)TL0-0 — Em o
($8€-0—)68T°1 — ;2 ﬁ
(660-0—)7€0°0 — aﬁ o
(089-1)S6¥-T + Rﬁ o
(059-1)S€9-1 + Nw% o
S12-06¥p-T + s% ﬁ
FS8-VLYY-T + :.3 ﬁ
(I155-7) €8%-T + B; o
861-DL6 1 + “IVL9-0=

uonenbs uorssaiSoy

V:‘C‘C‘C‘C‘C‘C‘C‘C‘CVIV:VIVI

(s-01 > d ‘L§+7T ="5°"4) uowrwoo jou Inq (161-0 = d ‘641 = 8 “4) [o[reed o1e souy oy sjue SUIPNOXH | "SI[0A PUB 901U SUIPN[OXY ,

sjuy

JsoreigaIsaur onenbe paal-10ys

£$9781q31I0AUT [B11IS3115) PIAT[-SU0]
Jsajeageieaut onenbe

P3AT-3UO] pPUB [BLIIS31I3) PIAT-}IOYS

ysid

SO[OA + DTN

+SULISYIOIOWOH

dnoin

SuOISsaIZaI N O 9y} 10] (1 16-0 = @) 9do[s uowwod a9y} Newrxoldde 0) pasn sem JUSOYJ0d

UONEB[OII00 Ueaw PAJYSiom ayJ, -uonenbs yowo Ioye sosayyuared ur udald st sdnoid [re Jo (€20-0 F 8LL-0 = g) do[s uowwod 3y} Joj 1ded1aul dY |, "suoy
-enbo aAnoIpa1d ay) 0) I3ja1 soNsHE)S ‘uonenbs YoBd MO[3q UAIS SI “9dO[s oY) SAIBWINSS 19)19q YOIYM ‘UOISSIIToI UBSW OLIPWO0IT 9y, “S[eWue JO suonem
-dod [e1njeu Jo sdnoI3 poALISp USASS Ul (;_Jedk ,_w [eop Sof) uonepwisse o) ( “J Sof) xopul ofjoqelour oY) Suneal suonenbs uoIssaIga1 9ANIPaId *G TTAVL



W. F. HUMPHREYS 549

These groups together with those derived for the other taxa are presented in Table 5
and this represents the best current separation of the data for the relationship between
I, and A (Fig. 1). These parallel lines account for 93% of the variance in the data.

Potential accuracy of the index

To obtain some measure of the potential accuracy of the index (Z,,) as a predictor of
A when larger samples are available the regression lines in Table 5 were superimposed.
This was achieved by subtracting the intercept for the common slope of the regression
lines from each appropriate datum point for the dependent variable 4. This results in a
common regression line based on 99 points. The regression accounts for 92% of the
variance in the data and has the values log 4 =0-777 log I,, — 0-015 (v =0-811; SEb =
0-024; t,=32-86, P < 0-001). The regression has fine confidence intervals but the pre-
dictive power for one new observation is low (Fig. 2).

log 4

log 1,

FiG. 1. Regression lines relating log I,, to log 4 (cal m~? year~?), adjusted for the common

slope of 0-788 + 0-023, for the seven derived groups of animal populations. The numbers on the

lines refer to the following groups of animals: 1, Homoiotherms excluding mice and voles

(@); 2, mice and voles (O); 3, fish (M); 4, short-lived terrestrial and long-lived aquatic

invertebrates (—ants) (0J); 5, long-lived terrestrial invertebrates (—ants) (%); 6, short-lived
aquatic invertebrates (A); 7, ants (®).

The relationship between I,, and P

An alternative approach to this problem is to use the index (Z,,) to predict P and then
estimate R from the appropriate equations relating P and R (Humphreys 1979). A4 is then
determined by adding the estimates for P and R.

Using the same procedure as before seven groups can be separated from the data set
with respect to the relationship between P and I,, (Table 6) but the rank order of the
intercepts for the common slope (Fig. 3) differs from that in Table 1 or 5 as would
be expected from the rank order of the relationship between P and R (Humphreys 1979).
The appropriate analyses are given in Table 7. No attempt was made to separate the
invertebrates by life-style.
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log 4

log I,

FiG. 2. Common regression line, derived as described in the text, relating the index (log I,,) to
assimilation (log 4 cal m~2 year~!) in animal populations. The 95% confidence intervals are
shown together with the 95% prediction intervals for one new observation.

TABLE 6. Regression equations relating production (log P cal m~2 year—?!) to the
index (log I,,) in the derived groups of natural population. The predictive equations
are followed by the GM regression

Intercept for
common slope of

Standard 0.782 + 0-034*

error of and for
Group Regression equation  n slope F, P r v=0:972

Other mammals P=0-746I,, + 0-833 11 0.231 10-24 0-011 0-730 0.928
P=1.0141, + 1.543 1.431
Fish P=0-614I,+0-573 8 0.125 24-13 0-0027 0-895 0-604
P =0-6861, + 0-586 0-639
Mice and voles P=1.0611, + 0-952 31 0-083 165-19 <10-5 0-922 0-334
P=1-1511,+ 1.150 0-754
Birds P=1.2141, +0-821 7 0-301 16:29 0-010 0-875 0-199
P=1.3881,+ 1071 0.472
Shrews P=0.9897,+0-169 5 0-187 27-93 0-013  0-950 —0-255
P=1.0411, + 0-276 0-134
Invertebratest P=0-6771,,—0-758 34 0-144 22.23 0-00005 0-640 —0-964
P=1.0571,,— 1-502 —1.336
Ants P=1.0351,,—2:669 4 0-013 >999 0-0002 1-00 —2.291
‘ P =1.0351,,— 2-669 —2.575

* Residual standard error; T Excluding ants.

Equations for the above relationship were used to estimate R from the appropriate
equation for the relationship between P and R in Humphreys (1979) using the equations
for the common slope in each case. The calculated R was added to P (estimated from I m
to give a further estimate of 4 (4,) derived indirectly from the index I,. The actual
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log P

log 7,

FIG. 3. Regression lines, adjusted for the common slope of 0-782, relating the index (log ,,) to

production (log P cal m~2 year™!) in the seven derived groups of natural populations of animals.

Various taxa are distinguished: 1, mammals (excluding shrews, mice and voles); 2, fish; 3,
mice and voles: 4, birds; 5, shrews; 6, invertebrates excluding ants; 7, ants.

TABLE 7. Synopsis of analyses of variance testing for common slope and intercept
for some of the regressions relating log I,, to log P(cal m~2 year~!) in animal

populations
Test for parallel lines Test for common intercept
F, d.f. P F, d.f. P Comment
Homoiotherms v. fishv.  0-36 3,92 0.781 14.79 3,95 <10=%  parallel separate
ants v. invertebrates
Birds v. shrews v. 0.05 2,48 0-949 6.58 2,50 0-0029 parallel separate
other mammals
Fish v. social insects 1.30 1,8 0-287 112.19 1,9 0-000002 parallel separate
Insects v. other 0-46 1,30 0-501 1.01 1,31 0-322 parallel common
invertebrates*
Birds v. shrews 0-40 1,8 0-544 5.99 1,9 0-037 parallel separate
Mice and voles v. other 2.85 1,38 0-099 17.28 1,39 0-00017  parallel separate
mammals

* Excluding ants.

budget log 4 was regressed against log 4, yielding the common equation log 4 =0-917
log A, + 0-115 (v = 1-004) which slope differs from zero (P < 0-001) but not from a slope
of 1.0 (¢,= 1-07, NS) and accounts for 91:3% of the variance in the data. This equation,
with the 95% confidence intervals and 95% prediction intervals for one new observation,
is presented in Fig. 4.

DISCUSSION

Analysis of the relationship between 4 and I,, and between P and I, has resulted in
separation of a number of metabolic categories of animals which is similar to those
derived for the relationship between P and R (Humphreys 1979). Homoiothermic animals
separate into two groups (mice + voles, and other homoiotherms) compared with three
and possibly four groups for the relationship between P and R (Humphreys 1979). The
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log 4

log AI

FI1G. 4. The relationship between estimated assimilation (log 4,) and budget assimilation

(log A cal m~? year~!). 4, was calculated from the relationship between the index (log 7,,) and

production (log P cal m~? year—!). Production was used to estimate respiration (cal m~2 year—?')

from the equations relating production to respiration in animal populations (Humphreys

1979). Assimilation was then the sum of the estimated P and the estimated R. The geometric

mean slope (v) = 1.004. Several taxa are distinguished; mammals (@), birds (M), fish (O),
invertebrates excluding ants (%) and ants (0).

poikilothermic animals separate into three taxonomic groups (fish, invertebrates (—ants)
and ants) as they did for the relationship between P and R (Humphreys 1979). The
categories are, however, not the same because non-insect invertebrates were not separable
from the non-social insects in this study and fish separate clearly from the social insects
(Table 1).

The P and R relationship permitted the separation of trophic categories within the
invertebrates (Humphreys 1979; Table 7) but not of habitat or life-cycle duration. For
the relationship between A and I, no trophic categories were separable within the
invertebrates but separation was possible for both habitat and life-cycle duration (Table 4).

In the relationship between P and R shrews could be separated from other mammals
and non-social insects from non-insect invertebrates (Humphreys 1979). Both these
comparisons for the relationship between I,, and 4 have significance levels which suggest
that a larger data set may result in separation of these taxa (Table 3). Due to the
clear and wide separation of the invertebrates by both life-cycle duration and by habitat
it is not satisfactory to group the invertebrates as a whole but no sensible subdivision
can be offered at present. Due to the wide, though non-significant, separation of the non-
social insects and the non-insect invertebrate lines (Table 1) use of these regressions
adjusted to the common slope of 0-78 would be more satisfactory than lumping the
invertebrate data. Alternatively, where there are sufficient data for minor taxa, calculation
of the relationship between 4 and I,, from the Appendix, with adjustment for common
slope, should prove satisfactory because of the presence of clear relationships between
A and I, for the other major taxa. This is a temporary expedient and there is need for
further data and analysis if satisfactory subdivisions are to be obtained for the inverte-
brates, a group showing considerable energetic variability and which is so important in
community studies.
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Analysis of the relationship between P and I, resulted in the separation of more
taxonomic groups than did that for the relationship between I,, and 4. The finer resolution
was to be expected as P is a more direct measurement in energy budgets while 4 is the
sum of two estimates each with their own error. However, separation of the invertebrates
(excluding ants) was not possible although they were clearly separated in the analysis of
the relationship between P and R (Humphreys 1979).

The predictive power of the index is unexpectedly high and the seven parallel lines
account for 93% of the variance in the data for the relationship between I,, and 4 and
91% of that for the indirectly derived relationship between 4 and A,. These compare
with equations relating P and R which accounted for 89% of the variance in the data
(Humphreys 1979). The common line derived for the relationship between I,, and 4 is
used here to discuss the confidence intervals as it accounts for the same amount of the
variance and is a better indicator of the potential accuracy of the index. The 95%
confidence intervals for the regression (Fig. 2) are narrow and over the range of values for
log I,, between —3 and 5 vary between +0-1 and +0-27 log units (4 = +1:26 to +1-86).
These confidence intervals compare favourably to those presented for the relationship
between P and R by McNeill & Lawton (1970) which had ranges in log units as follows;
homoiotherms (+0-32 to +0-39), all poikilotherms (+0-8 to +0-97) and short-lived
poikilotherms (+0-43 to +0-55).

The predictive power of the equation, despite the fine confidence intervals, is still low
as new observations are likely to be based on one set of data. The 95% prediction intervals
for one new observation vary, over the range of I,,, between +0-955 and +0-985. These
compare with the 95% prediction intervals for one new observation for the relationship
between P and R in terrestrial and aquatic poikilotherms between +0-65 and +1-07 log
units (Shorthouse 1971; cited in Humphreys 1978).

The relationship between log 4 and log 4, has wider confidence limits, as would be
expected from the method of calculation. The 95% confidence intervals vary between
+0-03 and +0-11 log units (1-06 to 1-29 times) and the 95% prediction intervals for one
new observation vary from +1.0 to +1-06 log units over a range of 4, between —1 and 3.

One can also examine the predictive power of the two relationships by calculating
production efficiency (P/4) from the intercepts for the common slopes in the two
relationships (7, against 4 and I,, against P). This is a sensitive way of examining the
data as it includes two estimates derived from the index (7,). These are presented in
Table 8 together with the actual P/4 for the data used and P/A4 for the large data set
analysed elsewhere (Humphreys 1979). This table identifies the main area of uncertainty
as the invertebrates. There is need to subdivide the invertebrate data into both taxonomic
and life-style categories. This has been done partially for the relationship between P and R
(Humphreys 1979) but is frustrated here by lack of sufficient data. The mean value of

TaBLE 8. Production efficiency (P/A%) of various taxa calculated from the
intercept for a common slope for both predictive and GM regressions for the
relationships between I,, and 4 and between I,, and P

Mean P/A% of the
Equations used: data used in From Humphreys
Group predictive =~ GM this study (1979)
Homoiotherms 3.9 4.0 31 2:6
Fish 9.2 9-3 9.9 10.7
Invertebrates 18.2 15.7 34.4 32:2
Social insects 8.4 7-5 10:3 10.3
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P/A (30-6%) for all invertebrates (except ants), derived as above from I,,, agrees with
those for the means of both the data presented in the Appendix (P/4 = 34-4%) and those
in Humphreys (1979; P/A = 32-2%). Clearly further analysis and data are required to
elucidate the energetics relationship within the invertebrates.

It is perhaps surprising that such a simple index based on crude parameters has the
degree of predictive power achieved and the ability to resolve between various groups of
animals. Whether this is a comment on the lack of resolution in published energy budgets
or some underlying principle, only further analysis will resolve. This crude index could be
improved by correcting the weight by a power function appropriate to the allometric
relationship between respiration and body weight for each species, by using the caloric
equivalent of body weight and by taking a more appropriate measurement of weight
dependent on the size-class structure of the population. However, in the published
literature these types of information are too rarely given to extract a data set sufficient for
analysis.

Within their predictive power the general utility of these equations is great due to the
simplicity of the information required. Biomass data can be reduced to their caloric
equivalent with reasonable accuracy from the caloric data for a wide range of species
presented by Cummins & Wuycheck (1971).

A plea

One of the prime functions of energy budget determinations for single populations
must be to gather a set of data to enable the derivation of generalized predictive equations
to facilitate studies on communities. Only about 43% of the 234 energy budgets considered
for this analysis had appropriate information on live-weight and biomass, although these
parameters must have been measured to create budgets. This is a consequence, I think,
of the attitude of ‘yet another energy budget’ which has made all concerned loath
to devote much space to energy budgets in the literature. Clearly the way budgets are
being published is inadequate if they are to fulfil one of their prime purposes. There is a
need for authors, referees and editors alike to be aware of the shortcomings of energy
budgets. In many cases more detailed presentation is required if they are to be useful for
prediction. The excessive disenchantment with energetics generalizations (May 1980) will
only be dispelled if they can be erected on a firm base of empirical data.
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NOTE ADDED IN PROOF

Banse, K. & Mosher, S. (1980). Adult body mass and annual production/biomass relationships of field popu-
lations. Ecological Monographs, 50, 355-379.

This extensive analysis of log mass specific production rate in relation to log mature body
weight, mainly in aquatic invertebrates, appeared after my manuscript had gone to press.
Mostly the method used in each paper is more suited to the data for which it was derived.
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ERRATUM

Humphreys, W. F. Towards a simple index based on live weight and biomass
— predicting assimilation ir animal oopulations. Journal of Animal Ccology,

50, 543-581.

1y

For 'cal m-zy—q’ read 'Cal m—zy_ throughout.
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