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LETTER TO THE EDITOR

Comment on Assessing the Need for Groundwater
Quality Guidelines for Pesticides Using the Species
Sensitivity Distribution Approach by Hose (2005).

People are increasingly reliant on aquifers for water but the nature, extent and
distribution of hyporheic and groundwater ecosystems is widely overlooked (Boulton
2001; Humphreys 2006) . Aquifers contain a significant component of total biodiver-
sity (Gibert et al. 1994; Marmonier et al. 1994; Rouch and Danielopol 1997; Culver
and Sket 1999; Danielopol et al. 2002) and play an important role in maintaining
water quality (Danielopol et al. 2003) . However, the ability of aquifers to sustain these
functions is potentially threatened by the increasingly degraded quality of ground-
water owing to their contamination with a wide range of industrial chemicals and
from eutrophication. Thus, it is timely that Hose (2005) questions whether surface
water quality guidelines are appropriately applied to groundwater ecosystems. In
the absence of data on groundwater (hypogean) organisms he used, as surrogate
groundwater taxa, the types of organisms found in both surface and groundwaters
compared with taxa found only in surface waters (epigean) (Hose 2005, p. 954),
while appropriately restricting his comparison to those groups of animals that are
found within the truncated subterranean biodiversity found in subterranean waters
(Gibert and Deharveng 2002). Within this subset of animals he then uses published
acute (48 h and 72 h) toxicity data to apply species sensitivity distribution (SSD)
analysis (Brix et al. 2001). Significantly, his analysis suggests that some hypogean
fauna may be less sensitive than epigean fauna, for example to Atrazine, or that
there was no indicated risk for groundwater animals at the concentrations of tox-
icants that have been reported from Australian groundwaters (two herbicides and
five insecticides).

Here, I question whether it is appropriate to use data in this manner as a measure
of acute toxicity on groundwater organisms and caution against its uncritical general
acceptance. The first concern is the absence of close phylogenetic matching of the
tested taxa whereby sister taxa with epigean and hypogean representatives should
properly be compared. This has been a general issue in the analyses of hypogean
adaptations (e.g., Hervant et al. 1997 and papers therein) owing to the widespread
lack of suitable paired taxa, and it will not be further discussed here.

The second factor is that subterranean organisms, as a class, have much lower
metabolic rates than comparable surface lineages. This factor is generic to the SSD
approach taken by Hose and could lead to severe systematic error in the estimates
of the toxicity of test substances to subterranean organisms, although the direction
of any bias is not always clear. Although metazoans of many higher taxa, including
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insects and vertebrates, are represented in groundwaters, stygofauna overwhelmingly
comprise crustaceans belonging to many different groups. Although insects and
arachnids are better represented in hyporheic fauna, here I will focus on metabolic
differences between epigean and hypogean crustaceans.

Obligate subterranean metazoans typically display a suite of characteristics pre-
sumed to adapt them to life underground in low energy and low PO, environments
(Hervant et al. 1998c; Malard and Hervant 1999; Huippop 2000), the latter being a
common feature of groundwaters. Among these characteristics, and especially per-
tinent in this context, are the low metabolic rates in hypogean species (rates from
29-59%: Hervant et al. 1998b) compared with surface members of their broad lin-
eage, and reductions up to an order of magnitude in anchialine animals (Bishop
et al. 2004) that typically inhabit severely hypoxic water (Sket 1996; Humphreys
1999). Even in fish, cave-adapted forms had reduced standard (18-27%) and rest-
ing (19-53%) metabolic rates compared with epigean forms (Poulson 1985; Hiippop
1986). This reduced metabolism is not solely a result of reduced activity, because in
excised gill tissue of Procambarus spp. (Decapoda) rates of oxygen consumption were
12-17% that of surface dwelling relatives and this may be coupled with concomitant
changes in ventilation rates, ATP turnovers, resistance to starvation, fat mobilization,
etc. (Dickson and Franz 1980).

Many stygobitic animals are highly resistant to low levels of dissolved oxygen,
some only being known from such waters (<0.5 mg L' DO), and may sometimes
rapidly switch between areas of low and high PO, (Hervant et al. 1998c; Malard and
Hervant 1999) and many hypogean species survive anoxia for much longer than
surface relatives (Hervant and Mathieu 1995; Hervant et al. 1995). The responses of
crustaceans to POy are complex and may have significant impact on energy balance
in low-energy environments. The critical PO, level below which respiration rates
could not be maintained, and post-hypoxic oxygen debt repayment, was lower in
hypogean than in surface species (Hervant et al. 1998b). Some hypogean species,
having no critical PO, (Caine 1978; Danielopol et al. 1994), are even considered to
be oxyregulators (Htppop 2000).

Resistance to hypoxia in hypogean animals is mainly due to lower energy ex-
penditure by a reduction in ventilation and locomotion, and due to anaerobic
metabolism based on the coupled fermentation of glycogen and amino acids. In
some crustaceans this is aided by the large stores of glycogen and arginine phos-
phate that permit efficient and prolonged anaerobic metabolism and subsequent
recovery by gluconeogenesis from the lactates synthesized during hypoxia (Hervant
and Mathieu 1996). Similarly, hypogean crustaceans survive longer without food
than any crustaceans previously studied and during which time locomotion, venti-
lation, and respiratory rates were markedly reduced in hypogean species, whereas
epigean species responded by marked and transitory hyperactivity (Hervant 1998a;
Hervant et al. 1997), factors of particular import in acute testing.

Hypogean vertebrates and invertebrates commonly have much greater fat stores
than surface relatives (Hiippop 2000; Gibert and Mathieu 1980; Mathieu and Gibert
1980), and this is pertinent to measures of metabolic intensity and where fat solubility
of toxicants may be an issue. Metabolic pathways may also differ between epigean and
hypogean species, as shown by lactate excretion by the hypogean isopod Stenasellus
virei, which is unusual for crustaceans (Hervant et al. 1998c).
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In the presence of a toxicant, the significance of metabolism may be detected
only after exposure to hypoxic conditions (Spicer and Weber 1992; Meade and Watts
1995). The toxicantitself may require increased metabolism (Grieshaber and Volkel,
1998), or else result in elevated (Smith and Hargreaves 1984) or depressed (Smith
and Hargreaves 1984; Meade and Watts 1995) metabolism of the test organism. Acute
measures of toxicity occur in a time span that generally does not allow equilibrium
conditions to be attained between the uptake of the toxicant and its elimination,
and significant improvement in testing can be achieved, even over a 96-hour test by
a mere 2.5-fold increase in test time (Canivet et al. 2001). Toxicants may accumu-
late and be eliminated passively but in many cases the degradation/elimination of
toxicants is an active process and thus metabolically dependent. Under toxic stress
an organism may exhibit an increase in respiration rate as a result of the increased
rate of protein turnover, which is thought to play an important part in the general
response of animals to toxicants (Barber et al. 1990). Because toxicants induce stress
this results in a reduction of the net energy balance (Koehn and Bayne 1988) and
thus may impact differentially on groundwater animals that typically inhabit low
energy environments.

The varied nature, but seeming ubiquity, of large differential metabolic responses
of hypogean as compared with epigean species, makes suspect the use of the epigean
groundwater surrogates in toxicity testing of relevance to groundwaters as used by
Hose (2005). Even if hypogean organisms are to be used, the effects of toxicants
may be enhanced in vivo by the low PO, environment and manifest only slowly due
to the increased metabolic rate required of the organism by the toxicant.

William F. Humphreys

Western Australian Museum

Locked Bag 49

Welshpool DC

WA 6106

Australia

E-mail: bill. humphreys@museum.wa.gov.au
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