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Abstract

Gradients in the sediment fauna comprising groundwater (GW) and hyporheic taxa were investigated in the sand/
silt-bottomed Marbling Brook in Western Australia. The structure of sediment invertebrate assemblages from
Marbling Brook sediments and the adjacent GW were studied at five sites over 1 year and hydrological interactions
were characterized using a suite of abiotic factors. Although all five stream sites were upwelling, the sites differed in the
degree of hydrological interactions between GW and surface water. Sediment fauna taxa abundances were not
correlated with any of the abiotic factors investigated and did not change gradually with depth. Faunal assemblages in
the stream sediments were distinct from faunal assemblages in alluvial GW. While water exchanged between alluvial
GW and sediment water, as shown by abiotic factors, the distinct differences in faunal assemblages indicated an
unpredicted complexity in the catchment with fundamentally different hydrogeological situations on the decimetre
scale. Sampling in sandy sediments needs to take this small-scale variability into account.
r 2007 Elsevier GmbH. All rights reserved.
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Introduction

Gradients of faunal assemblages have been found
along the transition from surface to subsurface water
(e.g. the upper Danube: Danielopol et al. 2000; the River
Rhône: Marmonier 1988; review by Malard, Tockner,
e front matter r 2007 Elsevier GmbH. All rights reserved.
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Dole-Olivier, & Ward 2002; the Kye Burn: Olsen &
Townsend 2005). Groundwater (GW) fauna (hypogean
taxa; stygobites; also called phreatobites) predominate
at the GW end of the gradient, and stream fauna
(epigean taxa) predominates close to the surface (e.g.
Brunke & Gonser, 1997; Ward & Palmer 1994). E.g.,
Brunke and Gonser (1999) showed that in the gravel-bed
Toess River, phreatobites dominated at the deeper strata
of below 50 cm in the GW exfiltrating zone, while
surface water (SW) fauna characterized shallower strata
and stream water-characterized zones. Usually, the
interaction zone between GW and SW forms a spatially
e sediment fauna beneath a small, sandy stream? Limnologica, (2007),
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and temporally highly variable ecotone underneath the
sediment surface with intense exchange of faunal
assemblages and water bodies (e.g. Fraser & Williams
1998). While these gradients are well-studied in large
and small rivers with highly conducive sediments, sandy-
bottomed rivers have rarely been investigated so far.
Three sandy sediment fauna investigations sampled
streams that were flowing on top of a clay layer or iron
pan (Cleven & Meyer 2003; Strommer & Smock 1989;
Whitman & Clark 1984). Thus, these streams did not
interact with underlying groundwater. Hahn (1996)
found stream sediment water down to a depth of
50 cm and groundwater to be distinct from each other.
He did not sample the groundwater itself. In the present
study, our aim was to test whether the SW/groundwater
gradients known from gravel-bed rivers can be observed
– at smaller scales (Boulton, Hakenkamp, Palmer, &
Strayer 2002) – in sandy, low hydraulic conductivity
systems. The ecotone where the exchange between
groundwater and SW is most intense was expected to
be closer to the surface than in coarser sediment rivers,
therefore, high resolution sampling was performed
within the first 40 cm of stream depth. Another aim
was to verify that it was indeed groundwater sampled in
the deep layers of the stream sediments. This was done
by comparing samples from alluvial groundwater wells
up-slope, within the groundwater/SW gradient, with the
sediment water samples. Since stream water was
expected to flush into the alluvial aquifer at high
discharge events, the groundwater was sampled at
different points with increasing distances from the
stream. The scale for this inflow was expected to be in
the range of 10m (Hill, Devito, Campagnolo, &
Sanmugadas 2000).

In wells with demonstrated episodical inflow from the
brook – and subsequent input of nutrients, carbon,
dissolved oxygen (Marmonier & Creuzé des Châtelliers
1991) – we expected invasions of stream fauna into the
aquifer. However, stream fauna was not believed to be
able to build stable populations but would recede as
soon as subsurface conditions were to become less
favourable again (Dole-Olivier, Marmonier, & Beffy
1997). At the same time, groundwater fauna was
expected to proceed further into the stream sediments
because with increasing groundwater influence these
assemblages would be able to out-compete stream fauna
in harsher conditions (Brunke & Gonser 1999).

We expected that the hydrological patterns leading to
enrichment of aquifer zones and impoverishment after-
wards would shape faunal assemblages to a higher
degree than the individual sampling site situation in
terms of geology, elevation, distance from spring, and to
a higher degree than differences in water chemical
gradients alone (Hakenkamp & Palmer 2000).

Our first hypothesis was that the groundwater/SW
gradient, both in terms of faunal patterns and abiotic
Please cite this article as: Schmidt, S. I., et al. Does groundwater influence th
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conditions, in the sand/silt Marbling Brook should
form within smaller ranges than in gravel-bed rivers,
i.e. within tens of centimetres beneath the stream bed.
We further tested (2) whether the subterranean water
at the groundwater end of the gradient reflected
the alluvial groundwater sampled up slope, and (3)
whether fauna would reflect these gradients or rather
physical and chemical features. The underlying assump-
tion was that the alluvial groundwater would be
homogeneous.

Materials and methods

The study was conducted in the Marbling Brook
catchment, which has one of the few permanently
flowing brooks in the mediterranean climate southwest
of Western Australia. In this part of the country,
permanent flow is usually directly related to ground-
water upwelling, especially groundwater from shallow
aquifers (not deeper than about 15m) in the alluvial
valley. The topography of the 30 km2 Marbling Brook
catchment shows a high (highest point of the catchment
4260m above sea level; confluence at 80m above sea
level) and well-defined relief. Because of the well-defined
relief of our study site, we expected that only one local
flow system with a clear gradient would evolve, whose
boundaries would be located under the hill chains (Tóth
1963). Sampling, monitoring and recording took place
between May 2001 and April 2002 in the Marbling
Brook catchment in Western Australia (easting:
0414602, and northing: 6506513).

The catchment

Marbling Brook is situated 60 km from Perth,
Western Australia and has a catchment area of
30 km2. Median flow measured between April 2001
and March 2002 was 132L s�1. The region experiences a
mediterranean climate with dry, hot summers and cool,
rainy winters (Bridgewater 1987). In Perth, only 5% of
the average annual rainfall occurs during summer
(December, January, and February). The average yearly
rainfall in Perth is 869mm.

The second order Marbling Brook is a tributary of
Brockman River, which feeds into the Swan River. The
catchment is situated in the Darling Ranges, in a
mountainous area. Geology is heterogeneous, compris-
ing quartz-feldspar-biotite granofels in the northern
part, quartz-micas schist and augengneiss in the
confluence area of the catchment, and alluvial/colluvial,
sandy material, in the central part. These structures are
overlain by laterite, an iron-rich crust (Fig. 1).

Five study sites were investigated, each including one
or more groundwater sampling wells as well as a stream
sediment sampling site. At each site, at least three stream
e sediment fauna beneath a small, sandy stream? Limnologica, (2007),
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sediment depth layers, as well as the SW, were sampled
for fauna and water quality (Fig. 1). Prior knowledge
about the hydrological exchange processes was not
available. The current study was therefore intended as a
preliminary study of groundwater influence on stream
sediment fauna in Western Australian sandy streams.

The sampling sites

Groundwater and stream sampling sites were chosen
to complement existing monitoring wells. The ground-
water wells that had been drilled prior to the study (WO
at the Webb site and the Stringybark well) deviate in
construction from those that were drilled for the present
study, having different diameters of the well, casing, and
slotted lengths. All other wells were drilled in March
2001 and were constructed of white PVC (50mm
Please cite this article as: Schmidt, S. I., et al. Does groundwater influence th
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diameter) with horizontal slots of 1mm width. At the
Read/confluence site it was not possible to do a transect
because of the gradient of the slope. Here, three wells
were drilled next to each other at the same distance from
the brook to serve as parallels. The sampling site at the
Schmidt area was a hand-dug gully used to conduct the
shallow groundwater towards the Marbling Brook, and
is included with the stream sites. Stream sampling sites
were investigated with four nested tubes (Schmidt,
Hahn, Hatton, Watson, & Woodbury 2004), installed
a week prior to the first sampling. The stream tubes were
constructed in a similar way to the groundwater
sampling sites: PVC or acrylic pipes reaching into the
sediment were slotted in the sediment depth layer to be
sampled. At each site one tube for each sediment depth
layer was sampled. The stream sediment tubes were
slotted at 0–5 cm for the shallowest sediment depth
e sediment fauna beneath a small, sandy stream? Limnologica, (2007),
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layer, then at 5–10, 10–20 and 20–30 cm. These tubes
were located approximately 40 cm apart. At the Lambie
site the deepest tube could not be installed due to the
prevailing sediment properties. This was also the case
for the tube second from the top at the confluence/Read
site.

Groundwater levels, vertical hydraulic gradient

(VHG) and stream discharge

In order to characterize groundwater/SW interactions
we described hydrological exchange along the hydro-
logical pathway in the sediments from distant ground-
water to SW in the Western Australian Marbling Brook
catchment by physical and chemical factors. Lamon-
tagne, Leaney, and Herczeg (2002, 2005) and Westbrook
et al. (2005) have used a similar suite of factors to map
the distribution of water types and transition zones in
the subsurface and the discharge for fresh groundwater
towards the sediment/water interface, especially for the
upper strata of hyporheic interstices (Brunke & Gonser
1999). E.g., a trend of increasing salinity along the
groundwater flow path was demonstrated for catch-
ments in the Western Australian Wheat Belt due to the
combination of evaporation and rock dissolution in
conjunction with travel time in the aquifer (Salama,
Bartle, & Farrington 1994).

Groundwater levels were recorded manually with a
dipper in the wells fortnightly. In June 2001, five of the
wells (WO, W1, L1, L3, S2; Fig. 1) were equipped with
water level data loggers (Capacitive Water Level Probe,
Dataflow Systems Pty, Christchurch, New Zealand).
Vertical hydraulic gradient in the stream sediments was
estimated by measuring the difference between the water
level in the stream tube and the water level of the SW
from the top of the tube in question to the nearest mm.
The VHG is then calculated by dividing this distance by
the depth of the sampling tube (Freeze & Cherry 1979;
Pepin & Hauer 2002).

In April 2001, a stream gauge (Unidata Starflow UDI,
Model 6526B; Unidata Australia, O’Connor, Australia)
was installed at the Webb site, measuring the flow
velocity. Measurements were taken of the flow each
minute and were averaged for every 15min to calculate
discharge. Precipitation was measured with a tipping
bucket rain gauge (Rimco RIM 7499, 0.2mm resolution;
McVan Instruments, Mulgrave, Australia) at the
Schmidt site. Daily precipitation sums were calculated.

Sampling

Approximately 1.5 L, according to the wells’ ability to
recover, were pumped from wells and stream tubes with
a 12V electric peristaltic vacuum pump (flow rate
0.03 L s�1; design by CSIRO, Floreat, Australia). We
Please cite this article as: Schmidt, S. I., et al. Does groundwater influence th
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did not purge the wells with several well volumes,
because of the resulting effects on the aquifer sediments.
Also, some wells did not recover immediately after
removing the standing water. As a consequence, the
recharging and subsequent increased exchange with the
atmosphere would have altered the water quality
considerably. Instead we used a micro-purging method
(Puls & Barcelona 1995) in all wells. Electrical con-
ductance (EC), dissolved oxygen, temperature, and pH
were measured using WTW probes and instruments
(WTW, Weinheim, Germany). Since it was known that
the groundwater was of a different quality than the
stream water (Hahn 2002), we used EC as the principal
tracer for groundwater/SW interactions (Salama, Far-
rington, Bartle, & Watson 1993; Stanford, Ward, & Ellis
1994).

Hydrogen carbonate concentrations were measured
using the auto-titrator TTT 85 with auto-burette ABU
80 and titration unit TTA 80 (Radiometer, Copenhagen,
Denmark) within 10 h of sampling. Subsamples were
filtered using a Millipore EP filtration unit with MF
membrane filters pore size 0.45 mm, and pre filter AP 15
(Millipore, Billerica, USA) and analysed for dissolved
iron. Calcium, magnesium, sodium, potassium, and
total iron analyses were performed from the acidified
sample. These samples and the filtered iron sample were
analysed with a Varian 600 flame atomic absorption
spectrophotometer (Varian NMR, Palo Alto, USA).
Total organic carbon (TOC) was measured with a TOC
Analyser CA 10 (Skalar, De Breda, The Netherlands).

Stream sediment cores were taken with a 50mm corer,
pushed about 15 cm into the sediment within 1m from
the stream tubes. Minimum distance to the nearest
stream tube was at least 30 cm from the next one. For
grain size analysis, about 350 g of stream sediment cores
(taken monthly) or soil sample from drilling the
groundwater wells, were dried at 110 1C and then
ground up. Sediments were sieved for 10min on a
shaker, using a set of sieves with the mesh sizes 0.063,
0.09, 0.125, 0.25, 0.355, 0.5, 1, and 2mm. After sieving,
the fractions o1mm and 41mm were burnt at 550 1C
for 4 h in a furnace. The weight loss after burning (loss
on ignition) was noted and used as a measure for FPOM
(fine particular organic matter; particles o1mm) and
CPOM (coarse particulate organic matter; particles
41mm).

The fauna was sampled with 45mm diameter
plankton net with 125 mm mesh, whenever water quality
measurements were taken, i.e. twice a month in stream
sites and monthly in groundwater. After water had been
pumped for chemical and physical analyses, the narrow
plankton net was lowered down the well. The net was
drawn up and lowered down as described in Bou (1974).
Dumas and Fontanini (2001) demonstrated the effi-
ciency of sampling by nets to be similar to sampling with
pumps. Raising and lowering the net was repeated 14
e sediment fauna beneath a small, sandy stream? Limnologica, (2007),
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times in the stream sediment tubes because initial tests
had shown that no fauna was retrieved after the 12th
draw. In some groundwater wells the net was always
clogged up after two draws, so for consistency, all
groundwater wells were sampled by lowering and
pulling up the net twice. Thus, the standard was the
sample of 14 draws in the short, 50mm diame-
ter� 50mm or 100mm vertical section for stream wells,
and two draws in the deep 50mm diameter� 2m
vertical section in groundwater wells. This type of
sampling, although not entirely quantitative, allowed a
regular and effective monitoring of all wells which
would not have been possible by time-consuming and
sediment-disrupting pumping. Since the sampling, espe-
cially in groundwater, was semi-quantitative, calcula-
tions were not performed on the abundances of taxa, but
on the frequencies. The faunal elements were sorted
alive under 40� magnification and identified micro-
scopically at a magnification of 400� .
Statistics

None of the values (abiotic or biotic) were normally
distributed, and the variances were not homogeneous,
even after transformation. Therefore, only nonpara-
metric tests were performed. Mann–Whitney–Wilcox
tests were used for pair-wise comparisons between
variables from streams and groundwater, and the
Wilcoxon signed rank test was used to test whether the
VHG values per sediment depth layer were significantly
larger or smaller than zero. The Behrens–Fisher test
with the Satterthwaite t-approximation was employed
for nonparametric multiple comparisons (Munzel &
Hothorn 2001; R Development Core Team 2004).
Scatter plots were drawn to visualise potential relation-
ships between abundances of the total fauna, or of single
taxa with any one of the investigated factors. In the case
of a visible relationship, the correlation was tested with
the Spearman rank correlation.

The frequencies of the taxa occurring at the different
depths were analysed with a reciprocal averaging
analysis (RA; Hill 1973; algorithm implemented by B.
König, BfG Koblenz, Germany, unpublished). The taxa
and sites were ordinated according gradients in relative
abundance of taxa. The exploratory data analyses also
included Nonmetric Multi Dimensional Scaling (re-
ferred to as NMDS from here on; Primer 5, Plymouth
Laboratories, Plymouth, UK) performed on the faunal
data matrix, calculated using the Bray Curtis similarity
measure of the presence/absence-transformed data for
each site and depth. Groups of faunal assemblages per
site, per hydrological characteristics and per hydrologi-
cal unit were compared using the ANOSIM (analysis of
similarities) procedure (Clarke & Green 1988; Primer 5,
Plymouth Laboratories, Plymouth, UK). ANOSIM is a
Please cite this article as: Schmidt, S. I., et al. Does groundwater influence th
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nonparametric and multivariate equivalent to ANOVA
and tests the differences among groups (Clarke 1993), in
this case among groups of faunal assemblages at sites.

Relationships between faunal assemblages and physi-
cal and chemical factors were tested with the BIO-ENV
routine (Primer 5, Plymouth Laboratories, Plymouth,
UK), a multivariate correlation test. This procedure
does a stepwise search for the combination of environ-
mental variables to determine the best match (in this
case using the normalised Euclidean distance) between
the biotic and the abiotic configuration (Clarke &
Ainsworth 1993). For this procedure, abiotic values
were log(x+1) transformed and standardized. Faunal
data were presence/absence-transformed.
Results

Hydrogeological patterns

According to VHG, all the sites were significantly
upwelling in at least one sediment layer (po0.05; Fig.
2a). The sites differed markedly though in the intensity
of exchange. In Figs. 2(b) and (c), groundwater wells
were treated as consecutive sediment depth layers with
distance from the brook (see Introduction). The sedi-
ments were mostly well oxygenated. Dissolved oxygen in
the sediments was significantly lower than at the surface
of all sites (Mann–Whitney W ¼ 24,039, po0.001). The
patterns of VHG, EC and dissolved oxygen were not
gradational along the presumed flow paths and these
factors did not vary in a consistent way across the
sampled sites (Table 1, Fig. 2).

Water level data further indicated groundwater flow
towards the brook at all sites; groundwater level above sea
level decreased with decreasing distance to the brook
(Fig. 3). Gradational changes in relative ion compositions
were found for L3–L1, S4–S2 and W1–WO (Fig. 3).

The groundwater well at the Stringybark site had a very
constant head and its water was significantly fresher than
that of the brook. At the Schmidt site the gradient of
increasing EC with increasing groundwater flow distance
downhill did not include the lowest well S1, which was
more similar in EC and relative ion compositions to the
well S3. Stream water was significantly fresher than the
groundwater. At the Webb site, water levels in the well
W1 were lower in summer than those in the well WO
(Figs. 3e, f). At the confluence/Read site, where the three
wells had been intended as parallels for the same aquifer,
very different patterns in seasonal water level and EC
variations were observed.

The distribution of organic matter, hydraulic con-
ductivity and grain sizes was heterogeneous in space and
time. Percentage of FPOM in the organic fraction of the
stream sediments ranged from 8.6 to 98.8, varying
e sediment fauna beneath a small, sandy stream? Limnologica, (2007),
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without obvious patterns in space and time. Hydraulic
conductivity, estimated from grain size distribution
based on Beyer (1964), was low in the stream sediments
(minimum: 3� 10�6 at the Schmidt site; maximum:
0.02m s�1 at the Lambie site; Fig. 4). In groundwater,
sediment samples could only be taken once during
drilling. Samples were taken from the depth where the
well casing was slotted. The sampled water and fauna
were derived from this area. The values are given as
diamonds in Fig. 4.
Groundwater and stream sediment fauna

Well fauna was distinctly different from stream
sediment fauna (Table 2). Only two species occurred in
both groundwater and SW: Parapseudoleptomesochra

sp. 1 and Australocamptus similis Karanovic, 2004. Of
the 5792 individuals in 65 taxa observed in all samples
from groundwater and SW sediments, A. similis was
found with five individuals in samples of the well S1.
One individual was found in the shallowest sediment
depth layer of the Stringybark site. About 678 indivi-
duals of Parapseudoleptomesochra sp. 1 were found in
stream sediments at the Webb, confluence/Read and
Lambie sites, and two in the well WO. While 4026
individuals belonged to the crustacea, only 164 indivi-
duals were insects. However, numbers in groundwater
and stream samples cannot be directly compared
because of the different sample sizes.

RA site scores showed that faunal compositions
within stream depths were much more similar among
each other than the groundwater well groups were (by
distance from the brook). The sequence of the stream
sediment layers was not consistent with the sequence
that was implied by the RA site scores (Table 2).

All correlations between single physical, chemical or
hydrological factors and faunal abundances in total or
per species were not strong (Spearman rS not stronger
than the absolute value of 0.26; scatter plots not
presented). The ANOSIM test resulted in a significant
difference between the groundwater and stream sedi-
ment assemblages (R ¼ 0.543; p ¼ 0.001; Fig. 5a). The
taxa composition of the stream sites by itself (Fig. 5b)
did not exhibit a gradient in faunal composition with
increasing numbers of groundwater taxa with depth. A
gradient in faunal composition from SW to deeper
sediment layers was absent. The assemblages of the
Fig. 2. Boxplots of (a) VHG (vertical hydraulic gradient), (b) EC (ele

lines differentiate among groundwater wells and sediment layers, w

surface water (SW). Difference from VHG ¼ 0 is *statistically sig

a ¼ 0.01 level; ***statistically significant at the a ¼ 0.001 level (Wilco

depth layer 20–30 cm at the Stringybark site was significantly dow

represent mean values that were not significantly different (Behrens–

the Read site were all close to the river, but are drawn next to each
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sediment depth layers were not different from each other
(Fig. 5b).

The BIO-ENV procedure to find the combination of
environmental variables that correlated best with the
faunal matrix, was conducted with the variable suite of
hydraulic conductivity, pH, temperature, EC, dissolved
oxygen, nitrate, iron, calcium, and magnesia values. For
the groundwater matrix, additionally distance to the
brook, sodium, potassium, sulphate, and silica were
included in the test. For the groundwater samples an
abiotic variables’ matrix consisting of distance to the
brook, hydrogen carbonate, nitrate, and total organic
carbon concentrations resulted in the best correlation
(Spearman rs ¼ 0.23, n ¼ 13). For the stream samples
sediment depth, landuse intensity, coarse particulate
organic matter, and dissolved iron concentrations
correlated best with the faunal assemblage (Spearman
rs ¼ 0.28, n ¼ 18). A significance value is not calculated
here because the BIO-ENV is an exploratory tool
(Clarke & Warwick 1994, pp. 11–10).
Discussion

This study showed that small sediment grain size and
the subsequently reduced exchange along the ground-
water/SW flow path resulted in interstitial invertebrate
communities to be largely unconnected. The underlying
assumption that deep stream sediment water would
reflect alluvial groundwater proved wrong. Deep sedi-
ment fauna was not similar to alluvial groundwater
fauna. As expected, faunal patterns were also not related
to variability in chemical and physical factors.

The expected small-scale groundwater/SW gradient
was not detected, neither in terms of faunal patterns, nor
abiotic conditions. Vertical hydraulic gradient, relative
water level, EC, and relative ion composition did not
show a consistent pattern (compare Brunke, Hoehn, &
Gonser 2003) of hydrological interactions at all sites of
Marbling Brook. EC and dissolved oxygen were
significantly lower in the stream sediments than at the
surface, but the clear gradients with depth known from
other studies (e.g. Boulton, Findlay, Marmonier,
Stanley, & Valett 1998; Strommer & Smock 1989;
Whitman & Clark 1984) were missing.

Fauna sampled in the stream sediments contained
almost none of the taxa characteristic for alluvial
groundwater and faunal composition was significantly
ctrical conductance) and (c) dissolved oxygen. Solid horizontal

hereas dashed lines show the interface between sediment and

nificant at the a ¼ 0.05 level; **statistically significant at the

xon signed rank test; with continuity correction). The sediment

nwelling. In (b) and (c) boxplots that share the same letter

Fisher test; significance level p ¼ 0.05). Note that the wells at

other here to show their different character.
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Table 1. Behrens-Fisher statistic and two-sided significance value for the pairwise comparison of electrical conductance

Read/confluence Webb Lambie Schmidt Stringybark

Behrens-

Fisher

Two-sided

significance

value

Behrens-

Fisher

Two-sided

significance

value

Behrens-

Fisher

Two-sided

significance

value

Behrens-

Fisher

Two-sided

significance

value

Behrens-

Fisher

Two-sided

significance

value

VHG

A-B 0.384 0.329 0.552 0.923 0.265 0.009 0.330 0.115 0.673 0.424

A-C 0.452 0.857 0.595 0.622 0.181 0.000 0.416 0.743 0.497 1.000

A-D 0.607 0.543 0.529 0.994 0.423 0.885

B-C 0.533 0.927 0.570 0.812 0.303 0.044 0.630 0.358 0.250 0.063

B-D 0.584 0.719 0.758 0.003 0.208 0.017

C-D 0.481 0.998 0.675 0.123 0.416 0.847

EC

S-A 0.223 0.008 0.558 1.000 0.095 0.000 0.207 0.010 0.444 1.000

S-B 0.000 0.000 0.580 1.000 0.166 0.000 0.055 0.000 0.390 0.976

S-C 0.003 0.000 0.489 1.000 0.228 0.013 0.061 0.000 0.383 0.953

S-D 0.484 1.000 0.025 0.000 0.575 0.999

S-GW1 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

S-GW2 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000

S-GW3 0.005 0.000 0.000 0.000 0.000 0.000 1.000 0.000

S-GW4 1.000 0.000

A-B 0.022 0.000 0.533 1.000 0.516 1.000 0.047 0.000 0.471 1.000

A-C 0.054 0.000 0.442 1.000 0.668 0.425 0.080 0.000 0.467 1.000

A-D 0.466 1.000 0.007 0.000 0.600 0.992

A-GW1 0.000 0.000 0.000 0.000 0.143 0.000 1.000 0.000 0.000 0.000

A-GW2 0.000 0.000 0.000 0.000 0.102 0.000 1.000 0.000

A-GW3 0.337 0.666 0.000 0.000 0.000 0.000 1.000 0.000

A-GW4 1.000 0.000

B-C 0.822 0.000 0.401 0.993 0.624 0.837 0.551 1.000 0.511 1.000

B-D 0.454 1.000 0.129 0.000 0.701 0.588

B-GW1 0.000 0.000 0.002 0.000 0.183 0.002 1.000 0.000 0.000 0.000

B-GW2 0.000 0.000 0.000 0.000 0.140 0.000 1.000 0.000

B-GW3 0.963 0.000 0.000 0.000 0.000 0.000 1.000 0.000

B-GW4 1.000 0.000

C-D 0.545 1.000 0.093 0.000 0.717 0.385

C-GW1 0.000 0.000 0.000 0.000 0.072 0.000 1.000 0.000 0.000 0.000

C-GW2 0.000 0.000 0.000 0.000 0.029 0.000 1.000 0.000

C-GW3 0.915 0.000 0.000 0.000 0.000 0.000 1.000 0.000

C-GW4 1.000 0.000

D-GW1 0.007 0.000 1.000 0.000 0.000 0.000

D-GW2 0.000 0.000 1.000 0.000

D-GW3 0.000 0.000 1.000 0.000

D-GW4 1.000 0.000

GW1-

GW2

1.000 0.000 0.000 0.000 0.476 1.000 0.950 0.000

GW1-

GW3

1.000 0.000 0.000 0.000 0.422 1.000 0.680 0.840

GW1-

GW4

0.104 0.000

GW2-

GW3

1.000 0.000 0.478 1.000 0.339 0.861 0.137 0.001

GW2-

GW4

0.000 0.000

GW3-

GW4

0.014 0.000

DO

S-A 0.049 0.000 0.067 0.000 0.000 0.000 0.997 0.000 0.224 0.111

S-B 0.133 0.001 0.110 0.000 0.000 0.000 0.991 0.000 0.077 0.000

S-C 0.138 0.002 0.137 0.002 0.000 0.000 0.933 0.000 0.099 0.000

S-D 0.037 0.000 0.944 0.000 0.222 0.138

S-GW1 0.005 0.000 0.000 0.000 0.525 1.000 0.032 0.000

S-GW2 0.310 0.675 0.000 0.000 0.000 0.000 0.143 0.005

S-GW3 0.142 0.005 0.023 0.000 0.000 0.000 0.148 0.020

S-GW4 0.000 0.000

A-B 0.756 0.115 0.654 0.851 0.148 0.001 0.249 0.185 0.243 0.267

A-C 0.795 0.044 0.611 0.989 0.299 0.293 0.363 0.949 0.264 0.334
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A-D 0.404 0.996 0.392 0.995 0.506 1.000

A-GW1 0.449 1.000 0.000 0.000 0.024 0.000 0.184 0.167

A-GW2 0.949 0.000 0.093 0.000 0.000 0.000 0.000 0.000

A-GW3 0.722 0.543 0.325 0.767 0.028 0.000 0.000 0.000

A-GW4 0.000 0.000

B-C 0.551 1.000 0.422 1.000 0.742 0.116 0.656 0.892 0.521 1.000

B-D 0.243 0.154 0.663 0.839 0.901 0.001

B-GW1 0.160 0.011 0.014 0.000 0.069 0.000 0.285 0.553

B-GW2 0.868 0.002 0.069 0.000 0.074 0.000 0.000 0.000

B-GW3 0.493 1.000 0.169 0.020 0.400 0.987 0.000 0.000

B-GW4 0.000 0.000

C-D 0.274 0.344 0.497 1.000 0.830 0.024

C-GW1 0.096 0.001 0.027 0.000 0.070 0.000 0.347 0.859

C-GW2 0.849 0.006 0.058 0.000 0.005 0.000 0.023 0.000

C-GW3 0.467 1.000 0.152 0.007 0.111 0.000 0.019 0.000

C-GW4 0.004 0.000

D-GW1 0.004 0.000 0.062 0.000 0.058 0.000

D-GW2 0.105 0.000 0.039 0.000

D-GW3 0.391 0.994 0.016 0.000

D-GW4 0.006 0.000

GW1-

GW2

1.000 0.000 0.872 0.001 0.200 0.067

GW1-

GW3

0.841 0.085 1.000 0.000 0.153 0.008

GW1-

GW4

0.027 0.000

GW2-

GW3

0.129 0.015 0.918 0.000 0.903 0.000 0.348 0.968

GW2-

GW4

0.154 0.009

GW3-

GW4

0.332 0.915

S ¼ surface water; A ¼ 0–50; B ¼ 50–100; C ¼ 100–200; D ¼ 200–300mm. GW1 ¼ groundwater well closest to the stream; GW2–4 ¼ groundwater

wells with increasing distance from the stream.

Table 1. (continued)

Read/confluence Webb Lambie Schmidt Stringybark

Behrens-

Fisher

Two-sided

significance

value

Behrens-

Fisher

Two-sided

significance

value

Behrens-

Fisher

Two-sided

significance

value

Behrens-

Fisher

Two-sided

significance

value

Behrens-

Fisher

Two-sided

significance

value

S.I. Schmidt et al. / Limnologica ] (]]]]) ]]]–]]] 9
different. This is in contrast to Hahn’s (2002) prelimin-
ary study during which he found e.g. Atopobathynella

sp. in both stream sediments and groundwater, whereas
this taxon was restricted to groundwater in the present
study. Most recent studies based on samples from more
than two sediment depths revealed gradients with
increasing groundwater/decreasing stream water proper-
ties (e.g. Dole-Olivier, Creuzé des Châtelliers, &
Marmonier 1993; Fraser, Williams, & Howard 1996;
Malard et al. 2002; Marmonier 1988). Even where
gradual changes were not present, patches represented
different degrees of influence from the groundwater and
could be characterized within the groundwater/SW
gradient (Brunke et al. 2003; Dole-Olivier 1998; Dole-
Olivier et al. 1997). Dole-Olivier (1998) predicts gradual
changes on the large scale and patchy situations on the
reach scale. While our intention was to sample five sites
within the catchment, apparently the 3–4 sediment tubes
at each site represented the reach, not site scale in the
Marbling Brook system.
Please cite this article as: Schmidt, S. I., et al. Does groundwater influence th
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Additionally, the difference between stream sediment
and groundwater fauna in this study, which was based
on a larger data set than Hahn’s (2002) raises the
question whether the groundwater fauna found in other
studies in the sediments and the riparian zone (e.g. Ward
& Palmer 1994) is actually typical of the surrounding
groundwater aquifer, or rather of that part within the
ecotonal hyporheic zone that is least stream water-
influenced.

The VHG indicated net groundwater flow towards the
brook but this was not reflected in the gradients of
decreasing EC with increasing depth. A reason for this
might be that the changes within the sediment were
complex, similar to what Morrice, Valett, Dahm, and
Campana (1997) described in three alluvial montane
systems, to what Malcolm & Soulsby (2001) found for
wetland dunes, and to what Hoehn and Cirpka (2006)
modelled in two Alpine floodplains. Vertical hydraulic
gradients varied without the seasonal pattern shown in
Malard et al. (2001).
e sediment fauna beneath a small, sandy stream? Limnologica, (2007),
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Water levels (a, c, e, g) and relative ion composition of groundwater (b, d, f, h), represented as Stiff diagrams. (a, b) Schmidt

site. (c, d) Lambie site. (e, f) Webb site. (g, h) Read/confluence site. NA ¼ no measurements. AHD ¼ Australian Height Datum,

elevation over sea. Legend for the Stiff diagrams in (h). See Fig. 1 for sampling site details.
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Alluvial groundwater sampled in the different wells
was not homogeneous. Although the 25 km2 area in
Bangladesh studied by Cheng, Vangeen, Seddique, and
Ahmed (2005) was probably of a similar geomorphic
and geologic heterogeneity as the Marbling Brook
valley, the author found much less temporal and spatial
heterogeneity over the course of 3 years in 20 wells.
Martin et al. (2004) found heterogeneity in groundwater
Please cite this article as: Schmidt, S. I., et al. Does groundwater influence th
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nitrate levels to be related to altitude, well depth, and to
stream water level in the stream-near wells. Jankowski
and Beck (2000) described in large detail four hydro-
geological units in a New South Wales aquifer, but these
units were stratified in a stable way and on the
longitudinal axis variability was low.

Differences among Marbling Brook groundwater
wells were generally larger than those among stream
e sediment fauna beneath a small, sandy stream? Limnologica, (2007),
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Fig. 4. Sediment characteristics: boxplots of hydraulic con-

ductivity averaged over n sampling events for the stream

sediments and diamonds for the sediment of the corresponding

groundwater wells – sediment was obtained once from the

depth where the wells were slotted, when installing the wells.

The size of the diamond corresponds to the distance from the

stream. The well at the Stringybark was pre-existing, so no

sediment sample was taken.
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sediment strata. Thus, while the stream sediments are
still considered a highly active zone, steeper gradients
(maybe even ecotones) seemed to occur within the
groundwater aquifer (Schmidt; unpublished data).
While some variability in the alluvial aquifer had been
hypothesised as a consequence of seasonal inflow of SW
into the alluvial aquifer, the actual variability rather
indicated fundamental differences in hydrogeological
patterns throughout the catchment. Most studies of
groundwater spatial and temporal variability at the
1–50 km2 scale though show consistent variation of
chemical and physical factors within the catchment
(e.g. Muñoz-Carpena, Ritter, & Li 2005).

Hydrological patterns on the site scale

In detail, at the Stringybark site the groundwater well
showed a very constant head and its water was
significantly fresher than that of the brook. A hydro-
logical connection between the groundwater sampled in
this well and the summer-dry, saline stream reach at this
site is thus unlikely. The brook was probably fed by
runoff and interception, carrying a high salt load
(compare Salama, Hatton, & Dawes 1999).

At the Schmidt site the continuum of increasing EC
along the groundwater pathway (Salama et al. 1999)
followed the transect from S4 down to S2, but the
aquifer at S1 was influenced by another source of ions
and was more similar in EC and relative ion composi-
Please cite this article as: Schmidt, S. I., et al. Does groundwater influence th
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tion to the well S3. The upwelling water in the stream
site was fresher than the sampled groundwater, indicat-
ing yet another source of water. The groundwater body
sampled by S4–S3–S2 obviously took another path than
S1. This means that the groundwater wells at 20m
distance did not reliably capture groundwater flow.

At the Webb site, water levels in the well W1 were
lower in summer than those in the well WO, but if there
had been a hydrologic connection, EC in W1 would
have had to increase with input from the higher EC WO
water. Therefore, it appears there is a hydrologic barrier
between the wells W1 and WO, which were only 10m
apart from each other.

At the confluence/Read site, where the three wells had
been intended as parallels to sample the same hydro-
geologic situation, very different patterns in seasonal
water level and EC variations were observed. Studies on
a similar small scale mostly reveal much less hetero-
geneity within an alluvial channel (e.g. Katz, Chelette, &
Pratt 2004, study of the Woodville karst plane; the
Victorian Murray River bank studied by Lamontagne et
al. 2002, 2005). However, Lee, Choi, Kim, and Lee
(2005) differentiated four types of aquifer situations
according to groundwater level variation, but these four
types reflected different groundwater extraction prac-
tices, not different hydrogeological units. At the Read
site the three wells were drilled down to bedrock,
assuming that the same unit would prevail on top of
bedrock within 30m. However, the three wells were
drilled to different depths. Jankowski and Beck (2000)
have demonstrated high variability with depth within a
seemingly uniform aquifer, and apparently the three
wells at the Read site sampled a similar variety of
subunits (compare water levels in various rock forma-
tions in Fig. 8 in Reddy, Raju1, Reddy, & Reddy 2000).

All stream sites were upwelling, and thus groundwater
discharge was expected, in accordance with Pepin and
Hauer (2002), Lamontagne et al. (2002, 2005), and
Hunt, Strand, and Walker (2006). However, this
groundwater discharge was only traced reliably at one
of the five sites: the Lambie site. The middle alluvial well
at the Lambie site might sample an old meander of the
Marbling Brook, judging from the especially coarse
material extracted when drilling (own observations). In
the present study fauna in all the alluvial wells was
significantly different from hypogean, upwelling stations
in the active channel. Dole and Chessel (1986) found
along a gradient from active channel via side arm to old,
‘never’-flooded meander that the hypogean fauna did
not vary to a high degree between side-arm and old
meander, but was markedly different from the surface-
water fauna characterized active channel samples.
However, the direction of subsurface flow had not been
estimated in the cited study and it cannot be excluded
that the active channel stations were actually down-
welling. This is all the more likely since Ward and
e sediment fauna beneath a small, sandy stream? Limnologica, (2007),
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Table 2. Reciprocal averaging analysis of the distribution of the taxa (frequency based on abundances averaged for the five sites

and over time) in the sediment depths and groundwater wells closest to Marbling Brook (GW1) and nearby (GW2)

Species Species score 10–20 cm 5–10 cm 20–30 cm 0–5 cm GW1 GW2

nsites ¼ 5 4 4 5 4 3

Site score 0 0.1 0.5 2.3 96.4 100

Eucyclops sp. 3 0 100

Nitocrella sp. 1 0 100

Nitocra sp. 1 0 100

Onychocamptus bengalensis

(Sewell, 1934)

0 100

Paracyclops sp. 5 (cf. McRae,

unpublished)

0.06 100

Paracyclops sp. 8 (cf. McRae,

unpublished)

0.06 100

Cypridae sp. 1 0.06 100

Candonidae sp. 6 0.12 30.5 52.2 17.3

Eucyclops australiensis, Morton,

1990

0.36 83.9 16.1

Fierscyclops fiersi Karanovic,

2004

0.42 50.9 11.6 25.5 12.0

Mesocyclops brooksi Pesce, De

Laurentiis, &

Humphries, 1996 0.50 47.1 32.3 20.7

Candonidae sp. 5 0.53 64.5 12.4 23.0

Nitocra sp. 4 (cf. McRae,

unpublished)

0.56 16.9 60.5 22.6

Nitocra sp. 5 (cf. McRae,

unpublished)

0.60 11.2 64.1 24.7

Paracyclops sp. 1 (cf. McRae,

unpublished)

0.66 21.3 19.6 40.2 19.0

Candonopsis cf. tenuis (Brady)

1886

0.66 38.3 7.6 33.3 20.8

Austrochiltonia subtenuis (Sayce,

1901)

0.68 70.1 29.9

Paracyclops chiltoni (Thomson,

1882)

0.87 27.4 13.8 27.5 31.4

Macrocyclops albidus (Jurine,

1820)

0.95 34.2 24.7 41.1

Candonidae sp. 1 0.99 19.8 37.7 42.6

Candonidae sp. 2 1.00 22.8 27.2 8.7 41.3

Candonocypris novaezelandiae

(Baird, 1843)

1.01 42.3 6.7 8.7 42.3

Australocyclops australis (Sars,

1896)

1.18 48.4 51.6

Metacyclops arnaudi (Sars, 1908) 1.47 28.7 6.6 64.7

Cypridae sp. 2 1.50 33.5 66.5

Calamoecia tasmanica

subattenuata (Fairbridge, 1945)

1.70 26.3 73.7

Candonidae sp. 4 1.85 18.9 81.1

Metacyclops mortoni, Pesce, De

Laurentiis, & Humphries, 1996

2.28 100

Nitocra sp. 2 (cf. McRae,

unpublished)

2.28 100

Parapseudoleptomesochra sp. 1 6.23 10.9 13.5 12.9 57.2 5.4

Australocamptus similis,

Karanovic, 2004

84.70 13.0 87.0

Canthocamptus sp. 3 97.02 100

Bathynella sp. 1 97.02 100

Protocrangonyx fontinalis,

Nicholls, 1926

97.02 100
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Table 2. (continued )

Species Species score 10–20 cm 5–10 cm 20–30 cm 0–5 cm GW1 GW2

nsites ¼ 5 4 4 5 4 3

Site score 0 0.1 0.5 2.3 96.4 100

Diacyclops sp. 1 97.06 98.8 1.2

Candonidae sp. 3 97.60 83.7 16.3

Canthocamptus sp. 1 97.75 80.3 19.7

Canthocamptus sp. 2 98.44 61.0 39.0

Metacyclops sp. 1 99.09 42.8 57.2

Hurleya sp. 1 99.60 28.8 71.2

Atopobathynella sp. 1 100 18.4 81.6

1

2

3

4
1

2 3

1
2

3

4

1
2

3

4

1

2

3

(b)(a)

Fig. 5. Two-dimensional NMDS plot of the faunal assem-

blages of the different hyporheic depth layers and groundwater

wells (only stream depth layers in (b)), averaged over the study:

(a) ANOSIM R ¼ 0.58, p ¼ 0.001; (b) ANOSIM R ¼ �0.03;

p ¼ 0.59. In (b) sampling sites are labelled according to the

stream sediment depth layers, sampled in depths of

1 ¼ 0–5 cm, 2 ¼ 5–10 cm, 3 ¼ 10–20 cm, 4 ¼ 20–30 cm. Stress

of (a): 0.12; stress of (b): 0.16. Solid circles: stream sediment

water; open circles: groundwater.
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Palmer (1994) conclude that the side arm was a mixing
zone between groundwater and SW.

Although at all sites at least one sediment layer was
upwelling, the sites differed markedly and unexpectedly
in the type of interaction observed, and to a higher
degree than e.g. detailed by Hill, Labadia, and
Sanmugadas (1998) or Hill and Lymburner (1998).
The patterns of vertical hydraulic gradient, EC, and
dissolved oxygen were not gradational along the
presumed flow paths, probably because there was more
than one flow path. These factors did not vary in a
consistent way across the sampled sites, so the expected
conformity in groundwater flow across all the upwelling
sites was not observed. However, Ward, and Voelz
(1990) have shown that interstitial riffle i.e. upwelling
assemblages did not differ between riffles along a 2000m
altitudinal gradient.

One reason for this higher-than-expected hydrological
complexity may lie in the low hydraulic conductivity.
Marbling Brook sediments’ median kf at the Lambie site
was 0.01m s�1 and lower at the other sites; gravels by
comparison have an average kf of 0.1m s (Huggenber-
ger, Hoehn, Beschta, & Woessner 1998). In Schultz and
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Ruppel (2002) study of sediments along groundwater/
SW transect the Beyer estimates of the kf revealed
stream sediments to be largely similar with the ground-
water values, except for very shallow stream depths
which had a lower kf. In Marbling Brook sediments we
found the inverse: stream sediments were considerably
coarser than groundwater sediment. The low kf prob-
ably led to complex exchange processes that are highly
variable. In contrast to this, dissolved oxygen did not
fall below a level of 1mgL�1 although one might have
assumed depletion of oxygen due to stagnation. Similar
oxygenation in a sandy aquifer was observed in the Mill
Creek and might be due to thermal convection (Whit-
man et al., 1984).

In summary, at the Stringybark, Schmidt, and Webb
sites the groundwater feeding into the stream was not
the same as that sampled in the alluvial wells. At the
confluence site the three wells that had been intended as
replicates sampled three different situations. Methods
such as natural isotopes (Lamontagne et al. 2002, 2005)
would help clarify which of the wells was hydrologically
connected to the Brockman River. The shallow ground-
water was not always in hydrological contact with the
brook where we expected it, highlighting the unpredict-
able nature of groundwater exchange in sandy streams.
Fauna and the abiotic environment

Faunal distribution in the Marbling Brook catchment
did not correlate to a high degree to the variation in
physical and chemical variables in general, contrary to
results by e.g. Pospisil, Danielopol, and Dreher (1994),
and Datry, Malard, and Gibert (2005), but in accor-
dance with Marmonier, Dole-Olivier, and Creuzé des
Châtelliers (1992) and Hakenkamp, Palmer, and James
(1994). Sediment depth was among those factors
describing faunal distribution best, similar to what
Maridet, Wasson, and Philippe (1992) found. However,
no combination of factors described more than a
quarter of faunal distribution variation. Gradients of
e sediment fauna beneath a small, sandy stream? Limnologica, (2007),
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competition for resources from the surface, as described
by Brunke and Gonser (1999), were thus not confirmed.
Nor did fauna relate to the VHG, as opposed to what
Pepin and Hauer (2002) described for benthic fauna.

Marmonier and Creuzé des Châtelliers (1991) and
Datry et al. (2005) have shown that fauna was especially
rich in the carbon-rich recharge zones (‘eu-alimonic’ zones
according to Hahn 2006). We assume that the weak
relationship between fauna and carbon in the Marbling
Brook catchment was due mainly to two factors. Firstly,
carbon concentrations might have sustained fauna at
some sites, while at other sites similar concentrations
might have led to clogging of the interstices and thus
created unfavourable conditions (Brunke & Gonser 1997).
Thus, increasing concentrations could have led to different
phenomena at the different sites. This was probably due to
the catchment’s high spatial heterogeneity – while at some
sites carbon might be a limiting factor, at other sites, due
to completely different hydrogeological characteristics,
other factors such as nutrients and subsequent microbial
populations would be more critical to fauna. Carbon in
particular is known to be distributed in an extremely
patchy way (Kaplan & Newbold 2000; Marmonier 1988).
Secondly, temporal heterogeneity blurs the effects of
chemical concentrations; a peak in dissolved nutrients
and/or carbon over days – which might be missed in our
sampling regime – might induce microbial growth which
in turn might provide food for fauna for weeks and
months. In those instances, dissolved nutrient concentra-
tions may tell nothing about the alimentary state of the
groundwater zone. Poole, Stanford, Running, and Frissell
(2006) highlight the importance of temporal and spatial
heterogenic groundwater/SW interactions for hyporheic
assemblages. However, the above-said will mainly be true
for impoverished groundwater zones common in older
aquifers of weathered hydrogeological settings.

In conclusion, hydrological exchange (and related
features such as depth of sediment, input and output of
nutrients and organics) is one of the factors best
describing faunal occurrence. This was expressed
recently in the development of the groundwater-fauna-
index (Hahn 2006) based on the relationship between
the hydrological exchange and fauna. However, since
this index also relies on relative amount of detritus in the
sample, it cannot be applied for the current data.
Methodology and scales

It is astonishing that the increasing groundwater
characteristics with increasing sediment depths as
described by Hahn (2002) were not found at other sites
in the present study of the same catchment. One possible
explanation is that the sampling method by Hahn (2002)
was based on stacked traps, while in the present study
distinct tubes at a distance of about 40 cm from each
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other were used to sample disparate sediment depth
layers. Thus, e.g. the stream well sampling the average
depth layer at the Lambie site probably captured the
zone of the most intense groundwater input into the
stream, while the other two wells sampled zones not
along this vertical gradient, but adjacent zones with
lower groundwater flow.
Movement underground

Stream fauna has been found at several kilometres
from the 8th order Flathead River (Stanford et al. 1994).
Valett, Fisher, and Stanley (1990) showed that four
times as much water flows underground than on the
surface. Hill et al. (1998) found water in 80 cm depth to
be characterized by stream water by more than 90% in
the Brougham Creek, which had half as much flow as
the Marbling Brook. They found the tracer to move up
to 5m laterally into the bank. The lateral extent of the
riparian zone is controlled by riverine floods as well as
by the interstitial flow patterns (Brunke & Gonser 1997).
Factors indicating hydrological exchange

With hydraulic connectivity having been low, one
might argue that interstices were too small for fauna to
live or even wander in the sediment. However, the
sediment pores were large enough to contain fauna in
Marbling Brook catchment, and fauna was found in all
of the studied wells, even if in small numbers. Fauna was
not necessarily small, in contrast to the study by
Hakenkamp et al. (1994) who only found the smaller
copepods in the sandy aquifer they had studied. Coineau
(2000) relates sediment taxa to prevailing grain size. In
Marbling Brook catchment, the amphipod Protocran-

gonyx fontinalis Nicholls, 1926 (size between 2.4 and
3.6mm) was found in two wells; in the well WO this
species was observed at almost every sampling occasion
and in regularly high numbers, even after a pumping test
during which the well volume had been extracted several
times. The fact that numbers were not decreasing even
after extracting high volumes means that the fauna
sampled in the well WO was representative of the fauna
in the surrounding aquifer and was not just living in the
well itself. Dumas (2004) found faunal assemblages to be
similar in wells which were pumped to different degrees,
while Rouch, Pitzalis, and Descouens (1993) had found
fauna at a pumped site to be lastingly depopulated.
While grain size data are not available for the well WO,
generally, grain sizes were small in the catchment (e.g.
diamonds in Fig. 4), yet not related to faunal
occurrences, as shown by BIO-ENV. In fact, the largest
groundwater taxa, amphipods, were found in the well
with the second smallest kf of 6.2� 10�6, as well as in
the well with the largest kf of 5.3� 10�4. We believe that
e sediment fauna beneath a small, sandy stream? Limnologica, (2007),
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fauna have modified porosity in these aquifers by
bioturbation (e.g. Nogaro et al. 2006).
Conclusion – recommendations for studies

beneath sandy streams

Groundwater input into the stream influences spatial
and temporal variation in the physical sediment habitat.
However, in the sandy-bottomed system of Marbling
Brook this influence was restricted to water exchange,
while faunal assemblages were largely distinct between
alluvial groundwater and sediment water. While the steep-
gradient ecotone had been expected to occur in the upper
layers of the stream sediments, in fact the gradients within
the alluvial groundwater aquifer were more pronounced.
This indicates an unpredicted complexity in the catchment
with fundamentally different hydrogeological situations.
Due to high unexpected lateral variability on the
decimetre scale the sampling design with stream tubes at
20 cm distance did not capture the expected vertical
variability in a representative way. However, unexpected
variability also occurred within the alluvial aquifer on a
smaller scale than the 10m scale described in Hill et al.
(2000). In systems such as Marbling Brook catchment it
will be extremely difficult to determine the zones of intense
interaction between groundwater and SW (Brunke &
Gonser 1997). The interaction zones might be extremely
narrow and variable on small scales, falling through the
sampling grid applied in the present study. It follows that
in systems like Marbling Brook it is not sensible to use
disparate wells to sample different stream sediment layers.
Instead, the use of stacked systems, as in Hahn (2002), is
recommended. This would e.g. enable to single out
vertical zones of preferred groundwater recharge to the
stream. Nutrients and carbon resources also need to be
sampled at a narrower spatial and temporal scale and
including particulate as well as dissolved compartments.
At every assumed exchange situation, several replicates
have to be installed, for stream as well as for groundwater
(Hakenkamp et al. 1994), and the groundwater wells need
to sample different depths to capture aquifer stratification.
It might be necessary to develop new fauna sampling
techniques that consider the centimetre scale rather than
the decimetre scale. However, such approaches will
increase the problem of small sample size for fauna.
One option could be sub-organism techniques from
molecular biology (e.g. Read, Sheppard, Bruford, Glen,
& Symondson 2006).
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souterraines interstitielles. Annales de Spéléologie, 29(4),
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Muñoz-Carpena, R., Ritter, A., & Li, Y. C. (2005). Dynamic

factor analysis of groundwater quality trends in an

agricultural area adjacent to Everglades National Park.

Journal of Contaminant Hydrology, 80, 49–70.

Munzel, U., & Hothorn, L. A. (2001). A unified approach to

simultaneous rank test procedures in the unbalanced one-

way layout. Biometrical Journal, 43, 553–569.

Nogaro, G., Mermillod-Blondin, F., Francois-Carcaillet, F.,

Gaudet, J. P., Lafont, M., & Gibert, J. (2006). Invertebrate

bioturbation can reduce the clogging of sediment: An

experimental study using infiltration sediment columns.

Freshwater Biology, 51, 1458–1473.

Olsen, D. A., & Townsend, C. R. (2005). Flood effects on

invertebrates, sediments and particulate organic matter in

the hyporheic zone of a gravel-bed stream. Freshwater

Biology, 50, 839–853.

Pepin, D. M., & Hauer, F. R. (2002). Benthic responses to

groundwater–surface water exchange in 2 alluvial rivers in
Please cite this article as: Schmidt, S. I., et al. Does groundwater influence th

doi:10.1016/j.limno.2006.12.002
northwestern Montana. Journal of the North American

Benthological Society, 21, 370–383.

Poole, G. C., Stanford, J. A., Running, S. W., & Frissell, C. A.

(2006). Multiscale geomorphic drivers of groundwater flow

paths: Subsurface hydrologic dynamics and hyporheic

habitat diversity. Journal of the North American Bentholo-

gical Society, 25(2), 288–303.

Pospisil, P., Danielopol, D. L., & Dreher, J. E. (1994).

Measuring dissolved oxygen in simple and multi-level wells.

In American Water Resources Association (Ed.), Interna-

tional conference on ground water ecology (pp. 57–66).

Herndon: American Water Resources Association.

Puls, R. W., & Barcelona, J. M. (1995). Low-flow (minimal

drawdown) ground-water sampling procedures. EPA/540/S-

95/504. Washington, DC: United States Environmental

Protection Agency Office of Research and Development

Office of Solid Waste and Emergency Response.

R Development Core Team. (2004). R: A language and

environment for statistical computing. Vienna: R Founda-

tion for Statistical Computing.

Read, D. S., Sheppard, S. K., Bruford, M. W., Glen, D. M., &

Symondson, W. O. C. (2006). Molecular detection of

predation by soil micro-arthropods on nematodes. Mole-

cular Ecology, 15(7), 1963–1972.

Reddy, M. R., Raju1, N. J., Reddy, Y. V., & Reddy, T. V. K.

(2000). Water resources development and management in

the Cuddapah district, India. Environmental Geology,

39(3–4), 342–352.

Rouch, R., Pitzalis, A., & Descouens, A. (1993). Effets d’un
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